tSmemory - translate5 TM service - REST API

® Overview and API introduction
© Endpoints overview
© default endpoint/example
© |s async?
® Available end points
O List of TMs
© Create TM
© Create/lmport TM in internal format
o Clone TM localy
O Delete TM
© Import provided base64 encoded TMX file into TM
® Handling if framing tag situation differs from source to target - for skipAll or skipPaired
Reorganize TM
Export TMX from TM
Export in internal format
Get the status of TM
Fuzzy search
New Concordance search
Concordance search
Update entry
Delete entry
Delete entries / mass deletion
Save all TMs
Shutdown service
O Test tag replacement call
® Configuration of service
© Logging
© Working directory
© Config file - obsolete - use commandline flags instead
® Conceptional information
© Openning and closing TM
© TM files structure and other related info
© NUMBER PROTECTION TAGS (NP TAG, t5:n)
® Tag replacement Pseudocode for tag replacement in import call:
© TAG_REPLACEMENT PSEUDO CODE
© NEW PSEUDO CODE

O O O O O 0O 0O O O O 0 0o

Overview and API introduction
In this document the translate5 TM service REST interface is described.
The translate5 TM service is build by using the OpenTM2 Translation Memory Engine.

It provides the following functionality:

® import new openTM2-TMs

® delete openTM2-TMs

® create new empty openTM2-TM

® import TMX

® open TM and close TM: not possible see extra section in this document. Maybe we need trigger to flush tm to the disk, but also it could be done in
some specific cases...

® query TM for Matches: one query per TM, not quering multiple TMs at once.

® query TM for concordance search

® save new entry to TM

® delete entry from TM

® |ocaly clone TM

® reorganize TM

® get some statistics about service

L]

also you can use tagreplacement endpoint to test tag replacement mechanism
This can be achieved by the following specification of a RESTful HTTP Serive, the specification is given in the following form:
1. URL of the HTTP Resource, where servername and an optional path prefix is configurable.
2. HTTP Method with affected functionality
3. Brief Description
4. Sent and returned Body.

Request Data Format:

The transferred data in the requests is JSON and is directly done in the request body. It's should be pretty json and ends with '\n}" symbol, because of bug
in proxygen that caused garbage after valid data.

URL Format:
In this document, the OpenTM2 is always assumed under http://opentm2/.

To rely on full networking features (proxying etc.) the URL is configurable in Translate5 so that the OpenTM2 instance can also reside under http://xyz/foo
/bar/.

Errors

For each request, the possible errors are listed below for each resource. In case of an error, the body should contain at least the following JSON, if it is
senseful the attributes of the original representation can be added.

{
errors: [{errorMsg: 'Given tmxData is no TMX."}]
}
Values
%service% Name of service(default - tSmemory, could be changed in t5m3mory.conf file

%tm_name%

Example

Name of Translation Memory

http://localhost:4040/tSmemory/examle_tm/fuzzysearch/?

Endpoints overview default endpoint/example Is
async?
1 Getthe list of TMs Returns JSON list of TMs G | [%service%/ /tSmemory/
ET
2 Create TM Creates TM with the provided name P /%service%/ /t5memory/
o
ST
3 | Create/Import TM Import and unpack base64 encoded archive of = P /%service%/ /t5memory/
in internal format .TMD, .TMI, .MEM files. Rename it to provided = O
name ST
4 | Clone TM Localy Makes clone of existing tm P /%service%/%t = /tSmemory/my+TM/clone
O m_name% (+is placeholder for whitespace in tm name, so there
ST [clone should be 'my TM.TMD' and 'my TM.TMI'(and in pre
0.5.x 'my TM.MEM' also) files on the disk)
tm name IS case sensetive in url
5 | Reorganize TM Reorganizing tm(replacing tm with new one G | [%service%/%t = /tSmemory/my+other_tm/reorganize +in 0.5.x and
and reimporting segments from tmd) - async ET m_name% up
/reorganize
5 Delete TM Deletes .TMD, .TMI files D | /%service%/%t = /tSmemory/%tm_name%/
E = m_name%/
L
E
TE
6 Import TMXinto TM | Import provided base64 encoded TMX file into = P | /%service%/%t & /tSmemory/%tm_name%/import +
TM - async O m_name%
ST /import
7 | Export TMX from Creates TMX from tm. Encoded in base64 G | [%service%/%t = /tSmemory/%tm_name%/
™ ET m_name%/
8 | Exportin Internal Creates and exports archive with .TMD, .TMI G | /%service%/%t = /tSmemory/%tm_name%/status
format files of TM ET m_name%/
9 Status of TM Returns status\import status of TM G /%service%/%t | /tSmemory/%tm_name%/status
ET m_name%
/status
10 Fuzzy search Returns entries\translations with small P /%service%/%t | /tSmemory/%tm_name%/fuzzysearch
differences from requested O m_name%
ST /fuzzysearch
11 Concordance Returns entries\translations that contain P /%service%/%t = /tSmemory/%tm_name%/concordancesearch
search requested segment O m_name%
ST /concordances

earch

http://opentm2/
http://xyz/foo/bar/
http://xyz/foo/bar/
http://localhost:4040/t5memory/memDE/entrydelete/

12

13

14

15

16

17

18

20

Entry update

Entry delete

Save all TMs

Shutdown service

Test tag
replacement call

Resources

Import tmx from
local file(in
removing
lookuptable git
branch)

Mass deletion of
entries(from v0.6.0)

New concordance
search(from v0.6.0)

Updates entry\translation

Deletes entry\translation

Flushes all filebuffers(TMD, TMI files) into the
filesystem

Flushes all filebuffers into the filesystem and
shutting down the service

For testing tag replacement

Returns resources and service data

Similar to import tmx, but instead of base64
encoded file, use local path to file

It's like reorganize, but with skipping import of
segments, that after checking with provided
filters combined with logical AND returns true.

It's extended concordance search, where you
can search in different field of the segment

Available end points

List of TMs

Purpose

Request

Params

Returns JSON list of TMs

GET /%service%/

—»nwOomT

P
(6]
ST

[%service%/%t
m_name%
lentry

1%service%/%t
m_name%
/entrydelete

/%service%_s
ervice/savetms

[%service%_s
ervice/shutdo
wn

/%service%_s
ervice/tagrepl
acement

[%service%_s
ervice/resourc
es

[%service%/%t
m_name%
/importlocal

[%service%/%
tm_name%/ent
riesdelete

[%service%/%
tm_name%
/search

/tSmemory/%tm_name%/entry

/tSmemory/%tm_name%/entrydelete

/tSmemory_service/saveatms

/tSmemory_service/shutdown

/tSmemory_service/tagreplacement

/tSmemory_service/resources

/t5memory/%tm_name%/importlocal

/t5memory/tm1/entriesdelete

/tSmemory/tm1/search

Returns list of open TMs and then list of available(excluding open) in the app.

Response

Response exanpl e:

{
"Open": [
{
"name": "menR"
}
1.
"Avail abl e on disk": [
{
"name": "mem.internal _format"
H
{
"name": "menml"
b
{
"name": "newBtree3"
b
{
"nanme": "newBtree3_cl oned"
}

|
}open - TMis in RAM Available on disk - TMis not yet |oaded from di sk

Create TM
Purpose Creates TM with the provided name(tmd and tmi files in/MEM/ folder)
Request Post /%service%/%tm_name%/
Params Required: name, sourceLang

Response

Request exanpl e

{ "nane": "exam e_tnf', // this nane woul d be used as filename for .TMD and .TM files
{ "sourceLang": "bg-BG'} // should natch | ang in | anguages. xni
{"data": "base64_encoded_archive_see_inport_in_internal _format"}
["1 oggi ngThreshol d": 0]
}
this endpoint could work in 2 ways, like creation of newtm (then sourceLang is required and data can be

ski pped) or inmporting archived .tn{then sourceLang can be skipped, but data is required)it's possible to add
menDescription in this stage, but this should be explored nore if needed

Response exanpl e: Success: {

"nanme": "examnl e_tnt,
}
TM al ready exi sts:
{
"ReturnVal ue": 7272,
"ErrorMsg": "::ERROR_MEM NAME EXISTS:: TMwith this name already exists: exame_tnl; res = 0"
}

Create/lImport TM in internal format

Purpose Import and unpack base64 encoded archive of .TMD, .TMI, .MEM(in pre 0.5.x versions) files. Rename it to provided name
Request POST /%service%/
Params { "name": "examle_tm", "sourceLang": "bg-BG", "data":"base64EncodedArchive"}

Do not import tms created in other version of tsmemory. Starting from 0.5.x tmd and tmi files has tSmemory version where they were created in the
header of the file, and different middle version(0.5.x) or global version(0.5.x) would be represented as
version mismatch. Instead export tmx in corresponding version and create new empty tm and import tmx in new version.

This would create example_tm.TMD(data file) and example.TMI(index file) in MEM folder

If there are "data" provided, no "sourceLang" required and vice versa - base64 data should be base64 encoded .tm file(which is just archive that
contains .tmd and .tmi files

If there are no "data" - new tm would be created, "sourceLang" should be provided and should be match with lang in languages.xml

Response

Request exanple:{ "name": "mem.internal _format", "data":"

UEs DBBQACAg I APnT hVQAAAAAAAAAAAAAAAAVWAAQAT 1 RNXy 1J RDE3NSOwWXz Jf NVOi Lk 1FTQEAAADL z g EKgDAQY OFTEHWNWZSswr ACOSBY s 6W W
FBDI Lv6uO 2WZQw33I r 38CGhvRI smB1basSi i gzFEj uEb6XHEK\ / my XOPXt XsyxS2CazwhLDWeVTaWgEFMWYY\

/ 9WAl BLBWhEWTaSXAAAAAAAAAAACAAAAAAAAFBL AWQUAAGI CAD5q4 VUAAAAAAAAAAAAAAAAFGAEAEIUTVBE SUQx Nz Ut MR8y Xz Vi Yi SUTUQBAAA
A7d3Pa5JxHVDxz +Ns09phDAYdPf aDy QqWRc Y] S9nGpoYZhBeZMCl SW2v29506Vk qQONK\

/ 0KVzh4l oKAovnboUo1PHbuuwlU8dSn8c9Pk2y Thc53y+R5\ / POf L7P1wf 5Ps9zep5vI Oy3i M Si PLnOyPr Q71 n+r St TQARI \

/ bV9chEyHcx GPI KAGDnPonl 21Ss HNmUYNgf HZ70nnKNDo9ETOdHoz Fn2L+LI 9uxZPz az Pz 1mYQAAAAAAAAAAAAAAAAAAAAAAAAAAND: Bk XRoj 5
Zk 7Qg SFZ9g35Vn6k hNa6 V2 WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC BKb KHKA EnLomT5Dx V6 J 7 Fr mk KFy pBKt 9FczvYakKt r +2DLpi gPTWay G
q2uYj FUpC7VI 6aEl N8F8JPn\ / QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2 AN UOAG91 v60MNT4j 8uLBZ\

| X5+7dxn1zt X6Uy 5AgAAAAAAAAAAAAAAAAAAGABNLLGF) ntlr AO2I WNNObL9u4ul VUeEf cQuQAf xSNt | t shZayt B7j al ZZ2a5KhFGT3Qr \

[zt vipkz AnP1v06+F7UxL22t Rz SNf 6aFq08Mioi Y078\ / znnkTZo5Qr2YdoOSLSy DdbaVUop\ / G 3cDml4l 6\

/ ugf ++nDUNL1u4l S+k9MOKXL4QK72+775U+phCpp8sucdK728X5nK5hVT+weJqbTi H M NzWGLy NxW I 8r vxZ9cTf ycj 71NHLnsZgbf 54ull Kry
W6GFI ueBT6xHr zJRupDgk PXc9eyyduJnbLkf 6\ / m YRDgQDPt O++3\ / uYvsaz ANf YHx68vLEs SvOKedxga\ / hAGowD4Jh\ / 1X\

/ dH1X5s EBZpoHGE6\

/ AVBLBwW 3gRyzj Al AAAAAAAAAAAEAAAAAAFBLAWQUAAGI CADS g4 VUAAAAAAAAAAAAAAAAFGAEAEIUTVEE SUQX Nz Ut MR8y Xz Vf Yi 5UTUK BAAAA7
d3PSINhHVDxz\ / Y1nbp0zf w2VW6CEj 00JkkFPs9DZZaFCi | RHRxKoJUI FXk06i BOk S5FvwedhDp28FDgOSqi | KQ

/1 CQWNI | uYVnJt 2f 7e K2ZM2Ps 1xp49b8Y+f P6Ar XegJy4i VORI Px6BNAXy T6ysr KhXl LZ49Pw kKP9hw

/ 19XcKAOD3PZX42+PDP0+JWNIAT765u3P33vbninxbvj O\

/ 3DLQOY 3r 5uC sZGhC2eGxgUAAAAAAAAAAAAAAAAAAAAAAAAAGFKXI | hOahQbLHel nDb3Xc6NW F77Ji ber 22zC2YY6bVLNoX5gp97Pa5ShPc8
ci 8sqHpd1k7a2+ZN+6eFQAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYX | Sk8bVUYy g6eVa905dt gt xGBf Bl qyqnkr WHZFVZCGp8aVDl 9ZeELxI Vj hR
Ns EWa+Uf f Al Vuf 78r C\ / 1eoK20Jf Ngnzt 3ChLnSp1DZW+bFJI \ / 467vgRUUVXV5Uut Kt s\

1 IX2pUMY Xvi e90CopE5 U7 QNEHSF WZXdnPvl Sr 8i 75xJcqVT7f POdLpSqj 5+t 9Sahy 8UBhOxWjLEph6nJVHhZNv UFPXbS3M Xy YWFvgSon3xf 2F
| dl pG CCoPi i YQVbLR3or\

| ZTOt SO4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCE KAt +ZSAt ONKKQpOSe Tf nZt yOnBCDr suluNB9sw 2pZ211 | N23J6wluZsu\V0y82bCOzJhpM
2EGTZdpMaERAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP] Unt eKORypXi i d5niltyX6j 7+9\

/ vvUES HCGo 104 BhAgAAAAAAAAAAAQAAAAAAUES BAgAAFAAI CAgA912FVERZNpJ c AAAAAAG AABYABAAAAAAAAAAAAL SBAAAAAEIUTVBE SUQXxNz U
t MF8y Xz Vf Yi 5NRUOBAAAAUES BAGAAFAAI CAgA\

| F2FVPe BHLOVAgAAAAABABYABAAAAAAAAAAAAL SBr AAAAE9UTVEE SUQXNz Ut MR8y Xz Vf Yi 5UTUQBAAAAUES BAGAAFAAI CAgA\

| F2FVGo104BhAgAAAAABABYABAAAAAAAAAAAAL SBi AVAAE9QUTV8t SUQxNz Ut MR8y Xz Vf Yi 5UTUK BAAAAUES GBI WAAAAAAAAAHGM AAAAAAAAAA
AAAWAAAAAAAAADAAAAAAAAANG AAAAAAAAACQY AAAAAAABQSWYHAAAAABEHAAAAAAAAAQAAAFBL BQYAAAAAAWADANG AAAAS BgAAAAA=" }
Response exanpl e: {

"pane": "exanl e_tnf

}

TM al ready exi sts:

{
"Ret ur nval ue": 65535,

"ErrorMsg": ""
}

Clone TM localy
Purpose Creates TM with the provided name
Request Post /%service%/%tm_name%/clone

Params Required: name, sourceLang

Endpoint is sync(blocking)

Response

Request exanpl e

{ "newNane": "exam e_tni // when cloning, cloned tmwould be renamed to this name(source tmis in url)
}
Response exanpl e:
Success:
{
"msg": "newBtree3_cloned2 was cloned successfully",
“time": "5 ns"
}
Fai l ure:
{
"ReturnVal ue": -1,
"ErrorMsg": "'dstTndPath' = /home/or/.t5nenory/ MEM newBt ree3_cl oned. TMD al ready exists; for request for
mem newBtree3; with body = {\n \"newNane\": \"newBtree3_cl oned\"\n}"
}
Delete TM

Purpose Deletes .TMD, .TMI, .MEM files
Request Delete /%service%/%tm_name%/

Params -

Response

Response exanpl e:
success:

{

"newBt ree3_cl oned2": "del eted"

H

Response

Response exanpl e:

failed:
{

"newBt ree3_cl oned2": "not found"
}

Import provided base64 encoded TMX file into TM

Purpose | Import provided base64 encoded TMX file into TM. Starts another thead for import. For checking import status use status call

Request = POST /%service%/%tm_name%/import

Params {"tmxData": "base64EncodedTmxFile" }

= additional:
"framingTags":
"saveAll" - default behaviour, do nothing
"skipAll" - skip all enclosing tags, including standalone tags
"skipPaired" - skip only paired enclosing tags

TM must exist
It's async, so check status using status endpoint, like with reorganize in 0.5.x and up

Handling if framing tag situation differs from source to target - for skipAll or skipPaired
If framing tags situation is the same in source and target, both sides should be treated as described above.
If framing tags only exist in source, then still they should be treated as described above.

If they only exist in target, then nothing should be removed.

Response

Request exanpl e: {

["fram ngTags": "ski pAll"["skipPaired", "saveAll"],]

“tnkData": " PD94bWwgdmVyc2l vbj 0i MS4w i Bl brm\vZG uZz0i dXRnLTgi Pz4KPHRt eCB2ZXJzaVWuPSI xLj Q Pgogl DxoZWFkZXI gY
3J1 YXRpb250b29s PSITREWYTGFUZ3VhZ2UgUGxhdGZvenDi | GNy ZWF0aWbud@vbHZI cnNpb2491 j guMCl gby 10bWy91 | NETCBUT TggRBybWF
0l i BKYXRhdH wZTO0i eGlsl i BzZWi0eXBl PSIzZWb0ZW6j ZSI gYWRt aWbs YWsnPSJI bi 1HQ | gc3Jj bGFuZz0i Ynet Qkei | G\NyZWF0aWuzZGF0Z
TOi M AXNTA4M FUMDkyY N EOW | gY3J! YXRpb25pZD0i dGVzdCl vPgogl Dxi h2R5PgoJ PHR1I GNy ZWF0aWduZGFOZTOi M Ax ODAy MTZUMIULMIA
1W | gY3J1 YXRpb25pZD0i REVTS1RPUCLSNTI CTOt CXFBDM | gY2hhbrdl ZGFOZTOi M AxODAYy MTZUMTULMIA4AW | gY2hhbndl aW@! kRFUOt UT
1At U USQkOLQ xQQz! i | Gxhc3R1c2FnZWRhdGU9I j | wWMTgw] E2VDE2MTMM\VoI | HVZ YWdI Y291bn@@I j Ei Pgogl CAgl CA8dHV2| Hht bDps YW
nPSJi Zy1CRyl +Ci Agl CAgl CAgPHNI Zz5UaGUgPHBol C8+1 GVuZDwv c2VnPgogl CAgl CASL3R1dj 4Kl CAgl CAgPHR1di B4bWw6bGFuZz0i ZWit R
0l i Pgogl CAgl CAgl DxzZW +RXRol DxwaCAvPi BkbmUBL3NI Zz4KI CAgl CAgPC90dXY+Ci Agl CABL3R1Pgogl Dw YnBke T4KPCO0bXg+Cg=="

} Response exanple: Error in case of errorFromv0_2_15

{ "%mnane%:""} in case of success

Check status of inmport using status call

TMX inport could be interrupted in case of invalid XM. or TMreaching it's limt. For both cases check status
request to have info about position in tnk file where it was interrupted.

Reorganize TM
Purpose Reorganizes tm and fixing issues.
Request GET /%service%/%tm_name%/reorganize

Headers Accept - applicaton/xml

up to v0.4.x reorganize is sync, so tmemory
starting from 0.5.x is async, so you can check status of reorganize similar to how you can check status for importTMX

Under the hood it creates new tm with $Org- prefix, then reimport all segments one-by-one, and then deletes original TM and rename reorganized TM to

replace original.
This request should flush tm(from RAM to the disk) before reorganizing

reorganize would check this condition

if (fvalidXmInSrc & fValidXm InTrg & (pProposal - >get SourceLen() != 0) && (pProposal ->get TargetLen() != 0) &&
(szTarget Language[0] != EOS) && (szTagTable[0] != EOS))

, and in case if this condition is true and then it passes segment to putProposal function, which is also used by UpdateRequest and ImportTmx request,
so other
issues could be connected to updating new tm.

In 0.4.48 reorganize responce would look like this

so if there is invalid segments, inspect tSmemory log

Export TMX from TM

Purpose Creates TMX from tm.
Request GET /%service%/%tm_name%/
Headers Accept - applicaton/xml

This endpoint should flush tm before execution

Response

Response exanpl e: <?xm version="1.0" encodi ng="UTF-8" ?>
<tnx version="1.4">
<header creationtool version="0.2.14" gitCommit="60784cf * refactoring and cl eanup" segtype="sentence"
adni nl ang="en-us" srclang="en-GB" o-tnf="t5nmenory" creationtool ="t5nenory" datatype="xm" />
<body>
<tu tuid="1" datatype="xm" creationdate="20190401T084052Z" >
<prop type="tngr:segNun >10906825</ pr op>
<prop type="tngr: mar kup" >OTMXM_</ pr op>
<prop type="tngr: docnanme" >none</ prop>
<tuv xnl:lang="en-GB">
<prop type="tngr: | anguage" >Engli sh(U. K.)</ prop>
<seg>For > 100 setups. </seg>
</tuv>
<tuv xnm :|ang="de- DE">
<prop type="tngr: | anguage" >CGERVMAN(REFORM </ pr op>
<seg>Fur > 100 Aufstellungen.</seg>
</tuv>
</tu>
</ body>
</tnx>

Export in internal format
Purpose @ Creates and exports archive with .TMD, .TMI, .MEM files of TM
Request = GET /%service%/%tm_name%/
Headers = application/zip

returns archive(.tm file) consists with .tmd and .tmi files
This should flush tm before execution

Response

Response exanpl e: %bi nary_dat a%

Get the status of TM

Request GET /%service%/%tm_name%/status

Params -

Would return status of TM. It could be 'not found', 'available' if it's on the disk but not loaded into the RAM yet, and 'open’ with additional info. In case if
there was at least one try to import tmx or reorganize tm since it was loaded into the RAM, additional fields would appear and stay in the statistics till

memory would be unloaded.

Response

Response exanpl e:

{//just opened tm wi thout inport\reorganize called
"status": "open",
"l ast AccessTi me":
"creationTinme": "20230703T122212Z7",
"t nCr eat edl nT5M version": "0:5: 1"

}
{/I/ after reorgainize was called
"status": "open",
"reorgani zeStatus": "avail abl e",
"reorgani zeTi me": 100,
"reorgani zeTime": "Overall reorganize tine is : 0:00: 02\ n",

"segnent sReor gani zed": 1112,

"inval i dSegrments": 10,

"inval i dSegnent sRCs": "5005:10; ",

"firstlnvalidSegnents": "123; 432; 554; 623; 659; 675; 741; 742; 753; 755; ",
"invalidSynbol Errors": -1,

"reorgani zeError Msg": ,

"] ast AccessTine": "",
"creationTinme": "20230810T095233Z",
"t nCr eat edl nT5M version": "0:5: 10"

} {//not opened but available on the disk

"status": "avail abl e"
}
{//not found tm {
"status": "not found",

"res": 48 // 48- both tm and tnmd files are no found, 16- only TMD file not found, 32 - only TM file not
found
}
The tnxl nportStatus could be "available", "inport" or "failed" if the inport had errors. If there were at
| east one inmport to that tm new fields would appear
{//tmin process of inport
"status": "open",
"tmxl nport Status": "inport",
"i nport Progress" : 56,
"inmportTime": "00:00: 13",
"segnent sl nported": 1356,
"inval i dSegnents": 23,
"invalidSymbol Errors": 2,
"inportErrorMg": "",
"] ast AccessTinme": "% ast AccessTi ne",
"creationTinme": "20230703T1222127",
"t nCr eat edl nT5M version": "0:5: 1"
}// in case if internal error happened, like t5menmory would have error 5034 or 5035 which indicates, that tm
size is reached it's limt and you should create new one to save new segnents or part that left fromtnx that
you tried to inport, status would look like this
{
"status": "open",
"tnxlnportStatus": "failed",
"importProgress": 100,
"inmportTime": "Overall inport tinme is : 0:00:19\n",
"segnent sl nported": 445,
"inval i dSegments": 1,
"invalidSynbol Errors": 0,
"inmportErrorMsg": "Warning: encoding 'UTF-16" from XM. decl aration or manual |y set contradicts the auto-
sensed encodi ng; ignoring at colum 40 in line 1; \n Fatal internal Error at colum 6 in |line 9605, inport
stopped at progress = 0% errorMsg: TMis reached it's size limt, please create another one and inport
segnents there, rc = 5034; aciveSegnent = 1834\ n\nSegnment 1834 not inported\r\n\nReason = \nDocunent =
none\ nSour ceLanguage = de- DE\ nTar get Language = en- GB\ nMar kup = OTMXUXLF\ nSource = in Verbi ndung mit

Bef esti gungswi nkel Ms-...-WPE-B zur Wandnontage eines Einzel gerats\nTarget = In conbination wth nounting
bracket MS-...-WPE-B for wall nounting an individual conponent ",

"l ast AccessTinme": ""

"ErrorMsg": " Fatal internal Error at colum 6 in line 9605, inport stopped at progress = 0% errorMsg: TMis

reached it's size limt, please create another one and inport segments there, rc = 5034; aciveSegnent =
1834\ n\ nSegnent 1834 not inported\r\n\nReason = \ nDoc"
}

So you woul d have info about |ast segment which interrupted tminport

Fuzzy search

Purpose Returns enrties\translations with small differences from requested
Request POST /%service%/%tm_name%/fuzzysearch
Params Required: source, sourceLang, targetLang

iNumOfProposal - limit of found proposals - max is 20, if 0 use default value '5'

Response

Request exanpl e:

Request exanpl e:

{ /] required fields
"sourceLang": "en-GB", /1 1angs woul d be checked w th | anguages. xm
"targetLang": "de",
"source":"For > 100 setups.",

/1 optional fields
["docurent Name": " OBJ_DCL- 0000000845- 004_pt - br. xm "],
[" segment Nunber ": 15],
["markupTabl e": " OTMXUXLF"], /1if there is no markup, default OTMXUXLF woul d be used.
/| Markup tables should be |ocated inside ~/.
t 5menor y/ TABLE/ %var kup$. TBL
["context":"395_408"],
[" nunCf Proposal s": 20], /1 num of expected segnments in output. By default it's 5
["1 oggi ngThreshol d": 0]
}

Response exanpl e:

Success:
{

"ReturnVal ue": 0,

"ErrorMsg": "",

" NunOf FoundPr oposal s": 1,

"results": [

{

"source": "The end",
"target": "The target",
"segnent Nunber": 0,
“idtott,
"docunent Nane": "Te2.xlf",
"sourcelLang": "de-DE",
"targetLang": "EN GB",
"type": "Manual ",
"aut hor": "THOVAS LAURI A",
"timestanp": "20231228T171821Z7",
"mar kupTabl e": " OTMXUXLF",
"context": "2_3",
"addi tional I nfo":
"internal Key": "7:1",
"mat chType": "Fuzzy",
"mat chRat e": 50,
"fuzzyWrds": O,
"fuzzyDiffs": 0O

}

exanple 2

{
"Ret urnval ue": 0,
"ErrorMsg": "",
" NumOf FoundPr oposal s": 1,
"results": [

{
"source": "For > 100 setups.",
"target": "Fur > 100 Aufstellungen.",
"segnment Nunber": 10906825,
B
"docunent Name": "none",
"docunent Short Nane": " NONE",
"sourcelLang": "en-GB",
"targetLang": "de-DE",
"type": "Manual ",
"mat chType": "Exact", // could be exact or fuzzy
"aut hor": ""
"tinmestanp": "20190401T084052Z",
"mat chRate": 100,
"fuzzyWords": -1, // for exact match it would be -1 here and in diffs
"fuzzyDiffs": -1, // otherwi se here would be ambunt of parsed words and diffs that was
/1 used in fuzzy matchrate cal cul ation
"mar kupTabl e": " OTMXM.",
"context": "",
"additionalInfo": ""
}
]
}
Not found:
{

"ReturnVal ue": 133,

"ErrorMsg": "Q mVenoryServi ceWrker:: concordanceSearch: ;"

}

For exact match used function that's conparing strings ignoring whitespaces. First normalized strings(w thout
tags).

If it's the same string, then t5menory is checking string with tags and could return 100 or 97 match rate
depending on result.

Then it's checking context match rate and if document nane is the sane(non case sensitive)

Then it's checking and nodifyi ng exact MatchRate according to code in code bl ock bel ow.

After that it would store exact matches only with usMatchLevel >=100. |f there would be no exact matches,
fuzzy match cal cul ati ons woul d begi n.

In case if there is at |east one exact match, any fuzzy matches woul d be ski pped.

In case if we have only one exact exact match, it's rate would be set to 102

For equal natches with 100% word matches but different whitespaces/ new ines, each whitespace/newine diffs
woul d be count as -1% For punctuation, at |east for 0.4.50, each punctuation would count as word token. This
woul d be changed in future to count punctuation as whitespaces.

For fuzzy calcul ation tags woul d be renoved fromtext, except t5:np tags, which would be replaced with their

"r" attribute to be counted as 1 word per tag.

For fuzzy rate calculation we count words and then diffs in normalized string(w thout tags), using this
formul a:
if (usDiff < usWrds)
{
*pusFuzzy = (usWords !'= 0) ? ((usWords - usDiff)*100 / usWords) : 100;
}
el se
{
*pusFuzzy = O;
} /* endif */ Regarging Nunber Protection feature, tags from nunber protection would be replaced with their
regexHashes fromtheir attributes, so they would be count as 1 word each. NP with the sanme regex woul d be

counted as equal

To count diffs, t5menory go throuht both segnents to find matching tokens, to find something called snake-
l'ine of matching tokens.

Then It marks unmatched as | NSERTED or DELETED tokens, and based on that it calculates diffs.

if it's 100%rate, we add tags and conpare it again

if thenit's not equal, here is how match rate woul d be changed - probably this woul d never happens, because
we have exact match test before fuzzy,

and we do exact test even if triplesHashes is different(which is pre-fuzzy calculation and if it's equal, it
could be flag that trigger exact test)

if (!'fStringEqual)

{
if (usFuzzy > 3)
{
usFuzzy -= 3;
}
el se
{

usFuzzy = 0;
} I* endif */
usFuzzy = std::min((USHORT)99, usFuzzy);
} I* endif */

then depending on type of translation it could tweak rate
if ((usModifiedTranslationFlag == TRANSLFLAG MACHI NE) && (usFuzzy < 100))

{
/1 ignore machine fuzzy matches
}
else if (usFuzzy > TM FUZZI NESS_THRESHOLD)
{

[rRHIEK KK EK I KK AR K AT IKKAKIEKARKAKIAK AR K AK AR F AR KA KA F AR K XK AKX [

/* give Ml flag a little | ess fuzziness */
/**/

if (usModifiedTranslationFl ag == TRANSLFLAG_MACHI NE)

{
if (usFuzzy > 1)
{
usFuzzy -= 1,
}
el se
{

usFuzzy = 0;
} /* endif */
} /* endif */
if (usFuzzy == 100 && (pGCetln->ul Parm & CGET_RESPECTCRLF) && !fRespect CRLFStringEqual)
{ /1 P018279!
usFuzzy -= 1,
}
add to resulting set
} /* endif */
} /* endif */

At the end fuzzy request replaces tags in proposal fromTMwi th tags fromrequest, and if matchRate >= 100,
it calculates whitespace diffs and apply matchRate-= wsDi ffs

Response

Exact Mat chRat e cal cul ati on: so, before usExact is equal to 97 or 100, depending if strings with tags are equal
ignoring whitespaces and then code do sone tweaks.
pdb is struct that have proposals fromTM pGetln is fuzzy requests data

/1 1 oop over CLBs and | ook for best natching entry

{
LONG | LeftCl bLen; // left CLB entries in CLB list
PTMX_TARGET_CLB pO b; // pointer for CLB |list processing
#defi ne SEG DOC_AND_CONTEXT_MATCH 8
#defi ne DOC_AND_CONTEXT_MATCH 7

#defi ne CONTEXT_MATCH 6

#defi ne SAME_SEG AND DOC_MATCH 5
#defi ne SAME_DOC_MATCH 4

#define MULT_DOC MATCH 3

#defi ne NORVAL_MATCH 2

#define | GNORE_MATCH 1

SHORT sCur Match = 0;

/1 1oop over all target CLBs
pd b = pTMXTar get d b;
| Left O bLen = RECLEN(pTMXTar get Record) -
pTMXTar get Recor d- >usC b;
while ((ILeftClbLen > 0) &% (sCurMatch < SAME_SEG AND DOC_MATCH))
{
USHORT usTransl ati onFl ag = pd b->bTr ansl ati onFl ag;
USHORT usCur Cont ext Ranking = 0; // context ranking of this match
BOCL f I gnoreProposal = FALSE;
/1 apply global nmenory option file on global nmenory proposals
if (pdb->bTransl ationFlag == TRANSLFLAG GLOBMEM) // pdb it's segnent in TM
{
if ((pCetln->pvGVOptList !'= NULL) && pd b->usAddDatalLen) // pGetln it's fuzzy requests segnent
{

USHORT usAddDat aLen = Nt nGet AddDat a(pCl b, ADDDATA_ADDI NFO_ I D, pCont ext Buffer, MAX_SEGVENT_SI ZE);
if (usAddDatalen)
{
GWEMOPT GobMermOpt = d obMenCet FI agFor Proposal (pGet | n->pvGVOpt Li st, pCont extBuffer);
switch (GobMenOpt)
{
case GV SUBSTI TUTE_OPT: usTransl ati onFl ag = TRANSLFLAG NORMAL; break;
case GV HFLAG OPT : usTransl ati onFl ag = TRANSLFLAG GLOBMEM br eak;
case GV HFLAGSTAR OPT : usTransl ati onFl ag = TRANSLFLAG GLOBMEMSTAR; br eak;
case GV EXCLUDE_OPT : flgnoreProposal = TRUE; break;
} /* endswitch */
} /* endif */
} /* endif */

if (pAb == pTMXTargetCl b)
{
usTarget Transl ati onFl ag = usTransl ati onFl ag;
} /* endif *
} /% endif */

/1 check context strings (if any)
if ((!flgnoreProposal)

&& pGet | n- >szCont ext [0]

&& pd b- >usAddDat aLen)

USHORT usCont ext Len = Nt nGet AddDat a(pCl b, ADDDATA CONTEXT_I D, pContextBuffer, MAX_SEGVENT_SI ZE);
if (usContextLen != 0)
{
usCur Cont ext Ranki ng = NTMConpar eCont ext (pTnCl b, pGetln->szTagTabl e, pGetln->szCont ext,
pCont ext Buf fer);
Y} /* endif */
Y} /* endif */

/1 check for natching docunent names
if (pGetln->ul Parm & GET_| GNORE_PATH)
{
/1 we have to conpare the real docunent names rather than conparing the docunent nanme |Ds
PSZ pszCLBDocNane = NTMFi ndNarmeFor | D{ pTnC b, &(pC b->usFileld), (USHORT)FILE KEY);
if (pszCLBDocName != NULL)
{
PSZ pszName = Ut | Get FnaneFr onPat h(pszCLBDocNare);
if (pszName == NULL)
{
pszNane = pszCLBDocNane;
} /* endif */
f Mat chi ngDocNane = stricnp(pszNanme, pszDocNane) == 0;

}

el se

{

/1 could not access the docunent nanme, we have to conpare the docunent nane |Ds
f Mat chi ngDocNane = ((pCd b->usFileld == usGetFile) || (pCb->usFileld == usAlternateGetFile));

Y} /* endif */
}

el se

{

/1 we can conpare the docunent nane |Ds

f Mat chi ngDocNane = ((pd b->usFileld == usGetFile) || (pCb->usFileld == usAlternateCetFile));

} /% endif */

if (flgnoreProposal)
{

if (sCurMatch == 0)

{

sCur Mat ch = | GNORE_VATCH;

} /* endif */
}
else if (usCurContextRanking == 100)
{

if (fmatchi ngDocNane && (pd b->ul Segmld >= (pGetln->ul Segnentld -

>ul Segrentld + 1)))

{
if (sCurMatch < SEG DOC_AND_CONTEXT_MATCH)
{
sCur Mat ch = SEG DOC_AND_CONTEXT_MATCH,
pTMXTargetC b = pCb; // use this target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
}
}
else if (fMatchi ngDocNare)
{
if (sCurMatch < DOC_AND_CONTEXT_MATCH)
{

sCur Mat ch = DOC_AND_CONTEXT_MATCH;

pTMXTargetd b = pAb; // use this target CLB for match
usTar get Transl ati onFl ag = usTransl ati onFl ag;

usCont ext Ranki ng = usCur Cont ext Ranki ng;

}

else if (sCurMatch == DOC_AND_ CONTEXT_MATCH)

{

/1 we have already a match of this type so check if context

if (usCurContextRanki ng > usCont ext Ranki ng)

{
pTMXTargetClb = pdb; // use newer target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;

}

/1 use tine info to ensure that latest match is used
el se if (usCurContextRanki ng == usCont ext Ranki ng)
{

/1 GQ 2015-04-10 New approach: If we have an exact-exact match use this one,

for the conparism

BOOL f Exact Exact NewCLB = f Mat chi ngDocNane && (pC b->ul Segmd >= (pGetln->ul Segnentld -

>ul Segm d <= (pGetln->ul Segnentld + 1));

BOOL f Exact Exact Exi stingCLB = ((pTMXTargetd b->usFileld == usGetFile) || (pTMXTargetC b->usFileld ==

usAlternateCGetFile)) &&

1)) && (pd b->ul Segm d <= (pGetln-

ranki ng

(pTMXTar get Cl b->ul Segm d >= (pCetln->ul Segnentld - 1)) && (pTMXTarget C b->ul Segm d <= (pCetln-

>ul Segnentld + 1));
if (fExactExact NewCLB && ! fExact Exact Exi stingCLB)
{
/'l use exact-exact CLB for match
pTMXTarget b = pd b;
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;

else if ((fExact Exact NewCLB == f Exact Exact Exi stingCLB) && (pC b->I Time > pTMXTarget Cl b->| Ti ne))

ot herwi se use tinmestanp

1)) && (pO b-

/1 use newer target CLB for match
pTMXTarget C b = pd b;
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
}
} /* endif */
} /* endif */
}
el se
{
if (sCurMatch < CONTEXT_MATCH)
{
sCur Mat ch = CONTEXT_MATCH;
pTMXTargetd b = pdb; // use this target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
}
else if (sCurMatch == CONTEXT_MATCH)
{
/'l we have already a match of this type so check if context ranking
i f (usCurContextRanki ng > usCont ext Ranki ng)
{
pTMXTargetClb = pCb; // use newer target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
}
// use tine info to ensure that |atest match is used
else if ((usCurContextRanki ng == usCont ext Ranki ng) && (pd b->ITine > pTMXTarget d b->I Ti ne))
{
pTMXTargetCl b = pCb; // use newer target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
} /* endif */
} /* endif */
} /% endif */
}
else if (fMatchingDocNanme && (pC b->ul Segmd >= (pGetln->ul Segmentld - 1)) && (pd b->ul Segm d <= (pCetln-
>ul Segrentld + 1)))
{
/1 same segrment from same docunent avail able
sCur Mat ch = SAME_SEG AND_DOC_NMATCH,
pTMXTargetClb = pCb; // use this target CLB for match
usCont ext Ranki ng = usCur Cont ext Ranki ng;
usTar get Transl ati onFl ag = usTransl ati onFl ag;

else if (fMatchi ngDocNane)
{
/1 segment from same docunent avail able
if (sCurMatch < SAME _DOC MATCH)
{
sCur Mat ch = SAME_DOC_MATCH;
pTMXTargetC b = pCb; // use this target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
}
else if (sCurMatch == SAME _DOC_MATCH)
{
/1 we have already a match of this type so
/1 use time info to ensure that |latest match is used
if (pAb->Time > pTMXTargetd b->I Tinme)
{
pTMXTargetClb = pdb; // use newer target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
} /* endif */
} /I* endif */
}
else if (pb->bMiltiple)

/1 multiple target segnent avail able

if (sCurMatch < MULT_DOC _MATCH)
{
/1 no better match yet
sCur Mat ch = MULT_DOC_MATCH;
pTMXTargetd b = pOb; // use this target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
} /* endif */

else if (usTranslationFlag == TRANSLFLAG _NORMAL)
{
/1 a 'normal' nenory match is available
if (sCurhMatch < NORVAL_MATCH)
{
/1 no better match yet
sCur Mat ch = NORMAL_MATCH;
pTMXTargetClb = pCb; // use this target CLB for match
usTarget Transl ati onFl ag = usTransl ati onFl ag;
usCont ext Ranki ng = usCur Cont ext Ranki ng;
} /* endif */
} /* endif */

/1 continue with next target CLB
if (sCurMatch < SAME_SEG AND_DOC_MATCH)
{
| Left A bLen -= TARGETCLBLEN(pd b);
if (ILeftC bLen > 0)
{
usTgt Numt+;
pCl b = NEXTTARGETCLB(pd b);
}
Y} /* endif */
} /* endwhile */

BOOL f Nornmal Match = (usTarget Transl ati onFl ag == TRANSLFLAG NORMAL) | |
(usTarget Transl ati onFl ag == TRANSLFLAG GLOBMEM) | |
(usTar get Transl ati onFl ag == TRANSLFLAG_GLOBMEMSTAR) ;
switch (sCurMatch)
{
case | GNORE_MATCH :
usiat chLevel = 0;
break;
case SAME_SEG AND_DOC_MNMATCH :
usiat chLevel = fNormal Match ? usEqual +2 : usEqual -1,

br eak;

case SEG DOC_AND_CONTEXT_MATCH :
usMat chLevel = fNormal Match ? usEqual +2 : usEqual -1; // exact-exact match wi th natching context
br eak;

case DOC_AND_CONTEXT_MATCH :
if (usContextRanking == 100)
{
/1 GQ 2015/ 05/09: treat 100% context natches as nornal exact matches
/1 usMat chLevel = fNormal Match ? usEqual +2 : usEqual - 1;
usMat chLevel = fNornal Match ? usEqual +1 : usEqual - 1;
}
el se
{
usiat chLevel = fNormal Match ? usEqual +1 : usEqual - 1;
Y} /* endif */
br eak;
case CONTEXT_MATCH :
if (usContextRanking == 100)
{
/1 GQ 2015/ 05/09: treat 100% context matches as nornal exact context matches
/1 usMatchLevel = fNornal Match ? usEqual +2 : usEqual - 1;
/1 GQ 2016/ 10/24: treat 100% context matches as nornmal exact matches
usMat chLevel = fNormal Match ? usEqual : usEqual -1;
}

el se

usMat chLevel = fNormal Match ? usEqual : usEqual - 1;

} /* endif */
br eak;

case SAME_DOC_NATCH :
usMat chLevel = fNormal Match ? usEqual +1 : usEqual - 1;
break;

case MJLT_DOC_NATCH :
ushat chLevel = fNormal Match ? usEqual +1 : usEqual - 1;
br eak;

def aul t
usMat chLevel = fNornal Match ? usEqual : usEqual -1;
br eak;

} /* endswitch */

New Concordance search

Purpose Returns entries\translations that fits selected filters.
Request POST /%service%/%tm_name%/search
Params Required: NONE

iNumOfProposal - limit of found proposals - max is 200, if 0 use default value '5'
Search is made segment-by segment, and it's checking segment if it fits selected filters. You can search for EXACT or CONCORDANCE matches in this fields:
source, target, document, author, addinfo, context
To set filter, use it's SearchMode field, otherwise filter would be disabled. So you have sourceSearchMode, targetSearchMode, documentSearchMode,
authorSearchMode, addInfoSearchMode, contextSearchMode
Search mode should be set explicitly to CONTAINS/CONCORDANCE or EXACT, otherwise filter would be ignored. But also each searchMode could have additional search parameters "CONTAINS, caseinsensetive,

WHITESPACETOLERANT, INVERTED", all that values is not important, as well as delimiter. By default search is case sensetive. If you add Inverted option, check for that filter would be reverted.
To check how filters would be parsed, check json in responce. Field with that info could look like this:

It's possible to apply filter just with SearchMode, like if you would type "authorSearchMode™: "exact",but there would be no "author" field, it would look for segments, where author field is empty.

Also there are timespan parameter, to set it, use this fields and format:

You should set both parameters to apply filter, otherwise you would get error as return. Check output to see how it was parsed and applied.
By default all mentioned filters is applied in logical and combination, but you can change that globaly with adding

Then all mentioned filters would be applied in logical or combination(please, use 1 to set this to true, boolean type is not supported by json parser in tsSmemory). Supported since 0.6.5

Instead of returning segments, just count them and return counter in

Also there are lang filters, they would always be applied to selection of segments that passed previous filters, so value of wouldn't be applied to that.
To set language filters, use this fields:

Lang filters could be applied with major lang feature, so source lang in this case would be applied as exact filter for source lang, but target lang would check if langs is in the same lang group. That check is done in
languages.xml file with isPreferred flag.
Lang filters and if filters is combined in logical or or logical and you can check in field of responce. It could look like this:

Other that you can send is:

So search position is position where to start search internaly in btree. This search is limited by num of found segment(set by) or timeout(set by), but timeout would be ignored in

case if there are no segments in the tm to fit params. Max is 200.

You can send empty json and search would work fine, but it would just return first 5 segments in tm
You can go through all segment with using this 2 fields

and just updating with
from responce.

Response

"logicalOr": 1,
"source":"the",
"sour ceSear chivbde": " CONTAI NS, CASEI NSENSETI VE, WH TESPACETOLERANT, | NVERTED',

“target":"",
"t arget Sear chMbde": " EXACT, CASElI NSENSETI VE",

"docunent":"evo3_pll37_reports_translati on_properties_de_fr_20220720_094902",
"docunent Sear chMode": " CONTAI NS, | NVERTED",

"aut hor":"sone author",
"aut hor Sear chMode" : " CONTAI NS",

“tinmestanpSpanStart": "20000121T11523427",
"timestanmpSpanEnd": "20240121T1152342",

"addl nfo":"sonme add i nfo",
"addl nf oSear chMbde" : " CONCORDANCE, WHI TESPACETOLERANT",

"context":"context context",
"cont ext Sear chibde" : " EXACT",

"sourcelLang": "en-GB",
"targetlLang":"SV',
"searchPosition": "8:1",
"nunResul ts": 2,
"nmeSear chAft er NunResul ts": 25,
"1 oggi ngThreshol d": 3

So here search would be done in logical or way, so if any of source, target, docunent, context, author,
tinmestanp filters returns true, result would be added to set, which then would be filtered out by sourcelLang
on exact match check and targetlLang on groupLang check.

Search would start fromposition "8:1"(tmdata start at "7:1" but if you wan't to start fromthe beggini ng,
just avoid that param

nunmResuts:2 - so if there would be 2 segnments found, search would end

"msSear chAf t er NunResul ts": 25 - 25ns after first found segnent, search would end, even if nore segments was
found, responce woul d contain "NewSearchPosition": "10:1", which can be used in searchPosition to continue
search

Response exanpl e: Success:

exanpl e{

"Filters": "Search filter, field: SOURCE FilterType:: CONTAINS SearchStr: 'THE ; Options:

SEARCH_FI LTERS_NOT| SEARCH_CASEI NSENSI TI VE_OPT| SEARCH_WHI TESPACETOLERANT_OPT]| ; \ n

Search filter, field: TARGET FilterType:: EXACT SearchStr: ''; Options: SEARCH CASEI NSENSI TI VE_CPT|;\n
Search filter, field: ADDI NFO FilterType:: CONTAINS SearchStr: 'some add info'; Options:

SEARCH_WHI TESPACETOLERANT_OPT| ; \ n

Search filter, field: CONTEXT FilterType:: EXACT SearchStr: 'context context'; Options: ;\n

Search filter, field: AUTHOR FilterType:: CONTAINS SearchStr: ''; Options: ;\n

Search filter, field: DOCUMENT FilterType:: CONTAINS SearchStr:

'evo3_pll37_reports_translati on_properties_de_fr_20220720_094902' ; Options: SEARCH FILTERS NOT|;\n
Search filter, field: TIMESTAWP FilterType:: RANGE Range: 20000121T115234Z - 20240121T115234Z Options: ;\n",
"d obal SearchOptions": "SEARCH FI LTERS LOG CAL_OR| SEARCH EXACT_MATCH OF_SRC LANG OPT, |ang = en-

GB| SEARCH_GROUP_NVATCH_OF_TRG _LANG OPT, lang = sv",

"ReturnVal ue": 0,

"Ret urnMessage": "FOUND',

" NewSear chPosition": "10:1",

"results": [

{

"source": "Congratul ations on the purchase of a <ph x=\"101\"/> nachi ne control system",
"target": "Gratulerar till kopet av nmaskinstyrningsystemet <ph x=\"101\"/>.",

"segnent Nunber": 5740419,

idtrott,

"docunent Nane": "none",

"sourcelLang": "en-GB",

"targetLang": "SV-SE',

"type": "Manual ",

"aut hor": ""

"timestanp": "20170327T091814Z",

"mar kupTabl e": " OTMXUXLF",

"context": "",
"addi tional I nfo":
"internal Key": "8:1"

3

{

"source": "The <ph x=\"101\"/> Systemis an ideal tool for increasing productivity in all aspects of the
construction earthnoving industry.",

"target": "Systenet <ph x=\"101\"/> ar ett verktyg som| anpar sig perfekt foér att Oka produktiviteten i nom

alla del ar av bygg- och anl 4ggni ngsonr &det . ",
"segnent Nunber": 5740420,

wigrs ome
"docunent Nane": "none",
"sourcelLang": "en-GB",

"targetlLang": "SV-SE",

"type": "Manual ",

"author": ""

"timestanp”: "20170327T091814Z",

"mar kupTabl e": " OTMXUXLF",

"context": "",

"addi tional Info": "",

"internal Key": "9:1"

}

]

}

Sear chPosition / NewSearchPositionFormat: "7:1"

First is segnent\record nunber, second is target nunber

The Next Searchposition is an internal key of the menory for the next position on sequential access. Since it
is an internal key, nmintained and understood by the underlying menory plug-in (for Eqf MemoryPlugin is it the
record nunber and the position in one record),

no assunptions should be nmade regarding the content. It is just a string that, should be sent back to OpenTM2
on the next request, so that the search starts fromthere.

So is the inplenentation in Translate5: The first request to OpenTM2 contains SearchPosition with an enpty
string, OpenTM2 returns than a string in NewSearchPosition, which is just resent to OpenTM2 in the next
request .

Not found: {

"Ret urnVal ue": 0,

" NewSear chPosition": null,

"ErrorMsg": ""

}TM not found:{

"Ret urnVal ue": 133,

"ErrorMsg": "Q mVenoryServi ceWrker:: concordanceSearch: : "

}

Here is search request with all possible parameters:

'('Iogicalor": 1,
“"source":"the",
"sourceSearchMode":"CONTAINS, CASEINSENSETIVE, WHITESPACETOLERANT, INVERTED",
“target":"", “targetSearchMode":"EXACT, CASEINSENSETIVE",
"document":"evo3_p1137_reports_translation_properties_de_fr_20220720_094902",

“documentSearchMode":"CONTAINS, INVERTED",

"author":"some author",
"authorSearchMode":"CONTAINS",

“timestampSpanStart": "20000121T115234Z",

"timestampSpanEnd": "20240121T1152342",

"addInfo":"some add info",

"addInfoSearchMode":"CONCORDANCE, WHITESPACETOLERANT",
"context":"context context",

"contextSearchMode":"EXACT",

"sourceLang":"en-GB",

“targetLang":"SV",

"searchPosition": "8:1",

"numResults":

"msSearchAfterNumResults": 25,
"loggingThreshold": 3

}
Al fields is optional, but some depends on other, so error should be returned in case of not providing required field

So request with this body would also work:

}
Parameter valueType default possible values requireField description
value
sourceLang string langs that can - Filter segments on srcfirg lang attribute,
be matched to
targetLan i
o 9 fangs in languages xml If specified lang is preffered, matching is done based on lang family,
otherwise on exact match
searchPosition string " (search "8:1" etc point where to start search in tmd file
would
start from "7:
b
then
numResults int 5 (0....200] points how many matches return in current request
msSearchAfterN 0 no check sets how many ms should pass between first found segment and search stop, if it didn't reach the end yet.
umResults
loggingThreshold -1 [0...6] additional field to set log level on the run
logicalor it 0 0 for false, any other number as true, by default source, target, document, author, context, addinfo, timestamp is combined in logical AND, but by sending here "OR" you can
example: switch that to logical OR, any other value would left it in default AND state.
"logicalOr": 1, Doesn't apply to sourceLang and targetLang filters, they are always in AND state
“onlyCountSegments”: 1
onlyCountSegm instead of returning segment, would go in search till the end of tm and return total number of segments, that returns true with selected filters
ents
source string any string, example sourceSearchMode | Sets what to look for in source of the segments, based on type of search, specified in it
"source": "data in the segment” sourceSearchMode is not specified, returns an error.
target targetSearchMode | --//—(the same as above but for corresponding fields)
document documentSearchM
ode
author authorSearchMode
context contextSearchMode.
addinfo addinfoSearchMo
de
timestampSpan | string string with date in format timestampSpanEnd | Sets filter for time. You need to provid both timestamps, or none, otherwise request would return an error. Could be used in "OR"
Start "20240121T115234Z" combination in
“logicalOr": 1,, but, maybe, it's better to change that behaviour to similar like with langs(Always AND)
timestampSpan timestampSpanSt
art
sourceSearchMo = string String with required - Sets type of search for corresponding field.
de EXACT or CONCORDANCE If you set, for example, "authorSearchMode" = "EXACT", but don't provide any
(or CONTAINS, what's equal to CONCORDANCE) author in request, author field would be "™, so request would look for segments,
targetSearchMo words and some optional, like where author equals to ™. The same is true for other fields
de CASEINSENSETIVE for non case sensetive comp Examples:
arison, 1
documentSearch WHITESPACETOLERANT for "source": "the text inside"
Mode modifying whitespaces(result of this actions you "sourceSearchMode":"CONTAINS, CASEINSENSETIVE, WHITESPACETOLERANT, INVERTED", - search would be for all segments, which
authorSearchMo can see in filters in responce) doesn't contains "the text inside" in non case sensetive mode and with normalizing whitespaces.
de INVERTED for applying filter in inverted state, so
to return false on match and true “author": "Ed Sheeran",
contextSearchM if no match. Logical NOT "authorSearchMode" = "Exact", -search would be done on exact case sensetive matches with "Ed Sheeran" in author field
3)
Attributes is not case sensetive, “author": "Ed Sheeran"
addinfoSearchM Separator doen't matters " ="C, TIVE", - ERROR, search mode(Exact\Contains) is not selected
ode

4) "author": "Ed Sheeran”, - ERROR, search mode(Exact\Contains) is not selected

5) "authorSearchMode" = "CONTAINS",- OK, filter would check if segment contains ", so every segment would return true then

Concordance search

Purpose Returns entries\translations that contain requested segment

Request POST /%service%/%tm_name%/concordancesearch

Params Required: searchString - what we are looking for , searchType ["Source"|"Target"|"SourceAndTarget"] - where to look

iNumOfProposal - limit of found proposals - max is 20, if 0 use default value '5'

Response

Request exanpl e:

{
"searchString": "The",
"searchType": "source", // could be Source, Target, SourceAndTarget - says where to do search
["searchPosition": "",]
["nunResul ts": 20,]
["meSear chAft er NunResul ts": 250,]
["1 oggi ngThreshol d": 0]
}
Response exanpl e: Success:
exanpl e_new{
"Ret urnVal ue": "ENDREACHED RC',
"NewSear chPosition": null,
"results": [
{
"source": "The end",
"target": "The target",
"segnment Nunber": 0,
idtott,
"docunent Nanme": "Te2.xIf",
"sourcelLang": "de-DE",
"targetLang": "EN-GB",
"type": "Manual ",
"aut hor": "THOVAS LAURI A",
"timestanp": "20231228T171821Z",
"mar kupTabl e": " OTMXUXLF",
"context": "2_3",
"additional I nfo": ""
"internal Key": "7:1"
}
]
}
exanpl e_ol d
{
"Ret urnval ue": 0,
"NewSear chPosition": null,
"results": [
{
"source": "For > 100 setups.",
"target": "Fur > 100 Aufstellungen.",
"segnent Nunber": 10906825,
idtott,
"docunent Nane": "none",
"docunent Short Nane": "NONE",
"sourcelLang": "en-GB", rfc5646
“targetLang": "de-DE', rfc5646
"type": "Manual ",
"mat chType": "undefined",
"aut hor": ""
"tinmestanp": "20190401T084052Z",
"mat chRate": O,
"mar kupTabl e": " OTMXM.",
"context": "',
"additionalInfo": ""
}
1,
"ErrorMsg": ""
}

Success, but with NewSearchPosition - not all TMwas checked, use this position to repeat search:
{

"Ret urnval ue": 0,

"NewSear chPosition": "8:1",

"results": [

{
"source": "For > 100 setups.",
"target": "Fur > 100 Aufstellungen.",
"segnent Nunber": 10906825,
idtott,
"docunent Nane": "none",
"docunent Short Nane": " NONE",
"sourcelLang": "en-GB",
"targetlLang": "de-DE",
"type": "Manual ",
"mat chType": "undefined",
"aut hor": ""
"timestanp": "20190401T084052Z7",
"mat chRate": O,
"mar kupTabl e": " OTMXM.",
"context": ""
"additional Info": ""
}
I
"ErrorMsg": ""

}
Sear chPositi on / NewSear chPositionFormat: "7:1"

First is segneng\record nunber, second is target nunber

The Next Searchposition is an internal key of the menory for the next position on sequential access. Since it
is an internal key, nmintained and understood by the underlying menory plug-in (for Egqf MemoryPlugin is it the
record nunber and the position in one record),

no assunptions shoul d be nmade regarding the content. It is just a string that, should be sent back to OpenTM2
on the next request, so that the search starts fromthere.

So is the inplenentation in Translate5: The first request to OpenTM2 contains SearchPosition with an enpty
string, OpenTM2 returns than a string in NewSearchPosition, which is just resent to QpenTM2 in the next
request.

Not found: {

"ReturnVal ue": 0,

" NewSear chPosition": null,

"ErrorMsg": ""

}TM not found: {

"Ret urnVal ue": 133,

"ErrorMsg": "Qt mMvenoryServiceWrker::concordanceSearch: "

}

Update entry

Purpose Updates entry\translation
Request POST /%service%/%tm_name%/entry
Params Only sourcelang, targetLang, source and target are required

This request would made changes only in the filebuffer(so files on disk would not be changed)
To write it to the disk just call request which would flush tm to the disk as part of execution(exportTMX, exportTM, cloneTM) or using SaveAllTms
request

Response

Request exanpl e:

{
"source": "The end",
"target": "The target",
"sourcelLang": "en", // langs woul d be checked with | anguages. xni

"targetlLang": "de",

//additional field

["docunent Nane": "Transl ate5 Deno Text-en-de.xIf"],

["segment Nunber": 8,]

["author": "Thonmas Lauria"],

["timeStanp": "20210621T071042z"], // if there is no tinmestanp, current time would be used
["context": "2_2"], // context and addlnfo would be saved in TMin the sane field

[*addl nfo": "2_2"],

["type": "Manual "], // could be d obal Menory, d obal MenoryStar, Machi neTransl ati on, Manual, by default
Undef i ned

["markupTabl e": "OTMXUXLF"], //if there is no markup, default OTMXUXLF woul d be used.

/1 Markup tables should be |ocated inside ~/.

t Smenor y/ TABLE/ %rar kup$. TBL

["1 oggi ngThreshol d": 0],

["save2di sk": 0] /1 flag if we need to flush tmto disk after update. by default is true

}

here are data struct used for search, so you can see nax nunbers of synbols
typedef struct _LOOKUPI NVEMORYDATA
{
char szMenory[260];
wchar _t szSource[2050] ;
wchar _t szTarget[2050] ;
char szl soSour celLang[40] ;
char szl soTarget Lang[40] ;
int | Segment Num
char szDocNane[260] ;
char szMarkup[128];
wchar _t szCont ext [2050] ;
wchar _t szAddl nf o[2050] ;
wchar _t szError[512];
char szType[256];
char szAut hor[80];
char szDat eTi ne[40] ;
char szSearchMdde[40]; // only for concordance search
char szSearchPos[80]; // only for concordance search
i nt i NumOf Proposal s;
int iSearchTine;
wchar _t szSearchString[2050];
} LOOKUPI NVEMORYDATA, * PLOOKUPI NVEMORYDATA;

Response exanpl e: success:

exanpl e_new{
"source": "The end",
"sourceNPRepl ": "The end",
"sourceNorni: "The end",
"target": "The target",
"segnment Nunber": 0,
"idUsott,
"docunent Nanme": "Te2.xIf",

"sourcelLang": "DE-DE",
"targetLang": "EN GB',
"type": "Manual ",

"aut hor": "THOVAS LAURI A",

"timestanp": "",
"mar kupTabl e": " OTMXUXLF",
"context": "2_3",
"addi tional I nfo": "addl nfo2",
"internal Key": "8:1"
}
exanpl e_ol d
{
"sourcelLang": "de-DE",
"targetlLang": "en-GB",
"source": "The end",
"target": "The target",
"docunent Nane": "Transl ate5 Denp Text-en-de.xlf",

"segnent Nunber": 222,

"mar kupTabl e": " OTMXUXLF",
"timeStanp": "20210621T071042Z",
"aut hor": "Thomas Lauria"

}
in case if simlar record exists, t5menory conparing source text,
if it's the same, t5nmenory woul d conpare docNane,

if it's the sanme,t5nenory woul d conpare tinestanps and woul d | eave only newer one

in case if TMis alreade reached it's limt, you would get

{

"Ret urnVal ue": 5034,
"ErrorMsg": ""

yor{

"Ret urnVal ue": 5035,
"ErrorMsg": ""

}

UpdateEntry Pseudo code

Update entry pseudo code: update segnent/i nport

{
if we have triples equal match (candidate for exact natch)
{
Updat eTnRecor d
i f (updat eFai | ed)
AddToTMAs NewKey
i f(added) UpdateTm ndex
}el sef
AddToTMAs NewKey
i f (added) UpdateTm ndex
}
}
Updat eTnRecor d{

get Li st O Dat aKeysFr ol ndexRecord
sort ThenByTri pl esivat chesW t hProposal (first have bi ggest match)

foreach key untill fStop==true{
readTnmRecord // tmrecord is 16kB block in file, first nunber in "7:1"

//conpare tmrecord data with data passed in the get in structure
Conpar eAndMbdi f yPut Dat a
i f(NO_ERROR) set fStop = true;
}
}

Conpar eAndModi f yPut Dat af
if source strings are equa
Delete old entry - with TM.oopAndDel TargetCl b
if fNewerTargetExists -> fStop = TRUE
Loop thru target records
|l oop over all target CLBs or until fStop
if segment+file id found (exact-exact-found!)
update time field in control block
set fUpdat e= f St op=TRUE
update context info
if not fStop
goto next CLB
endl oop
if no matching CLB has been found (if not fStop)
add new CLB (ids, context, tinestanp etc.)
endl oop
endl oop

if fupdated, update TMrecord
if IfStop (all target record have been tried & none matches)
add new target record to end of tmrecord
el se
return source_string_error // errcode for UpdateTnRecord to go to the next TMrecord in prepared |ist

}

TMLoopAndDel Tar get C b{
| oop through all target records in tmrecord checking
|l oop over all target CLBs or until fStop
if lang + segnent+file id found (exact-exact-found!)

if entry is older
delete it, fDel = TRUE

el se set fNewer Target Exi st s=TRUE(woul d be used i n Conpar eAndModi f yPut Dat a)
goon with search in next tgt CLB (control bl ock)

el se
goon with search in next tgt CLB (control bl ock)
endl oop
endi f
if not fDel
position at next target record
endl| oop

}

Delete entry

Purpose Deletes entry\translation
Request POST /%service%/%tm_name%/entrydelete
Params Only sourcelLang, targetLang, source, and target are required

Deleting based on strict match(including tags and whitespaces) of target and source

This request would made changes only in the filebuffer(so files on disk would not be changed)
To write it to the disk just call request which would flush tm to the disk as part of execution(exportTMX, exportTM, cloneTM) or using SaveAllTms

request

Response

Request exanpl e:

{

"sourcelLang": "bg",

"targetLang": "en",

"source": "The end",

"target": "Eth dne"

["document Nane": "ny file.sdlxliff",]

["segment Nunber": 1,]

["markupTabl e": "translate5",]

["author": "Thomas Lauria",]

["type": "",]

["timeStamp": ""],

["context": "",]

["addInfo": ""] , ["loggingThreshold": O]

}

Responce exanpl e:

"fil eFlushed": O,
"results": {
"source": "The tar",
"target": "The target",
"segnent Nunber": 0,
idtott,
"docunent Nane": "Te2.xIf",
"sourcelLang": "de-DE",
"targetLang": "EN-GB",
"type": "Manual ",
"aut hor": "THOVAS LAURI A",
"timestanp": "20231229T125701Z",
"mar kupTabl e": " OTMXUXLF",
"context": "2_3",
"addi tional I nfo":
"internal Key": "7:1"
}
}

Delete entries / mass deletion

P Deletes entries\translation
u
r
P
o]

se

R ' POST /%service%/%tm_name%/entriesdelete

e

q

u

e

st

P ' This would start reorganize process which would remove like reorganize bad segments and also would remove segments that gives true when

a | checking with provided filters combined with logical AND. So if you provide timestamps and addinfo, only segments within provided timestamp and
r with that addInfo would not be imported to new TM(check reorganize process).

a Every parameter is optional, so empty json would just start reorganize async process.

ms If you provide one of timestamps you would get error - please provide both.
To add parameter you should set it's SearchMode to be EXACT|CONCORDANCE(non case sensetive)
If only searched string provided, but not search mode - you would get error.

Response

Request exanpl e:

{

[*addl nfo": "ADD_I NFO'],

["addl nf oSear chMbde" : "EXACT"],
["context": "CONTEXT"],

[" cont ext Sear chMbde": "concordance"],

["author": "AUTHOR'],

["aut hor Sear chMode": "exact"],

["docunent": "docurment "],

[" docunent Sear chibde" : " CONCORDANCE"] ,
["timestanpSpanStart”: "20000121T1152342"],
["timestanpSpanEnd": "20240121T115234Z"]

}

Responce exanpl e:

"fil eFlushed": 0,
"results": {
"source": "The tar",
"target": "The target",
"segnent Nunber": 0,
idtott,
"docunent Nane": "Te2.xIf",
"sourcelLang": "de-DE",
"targetLang": "EN-GB",
"type": "Manual ",
"aut hor": "THOVAS LAURI A",
"tinmestanp": "20231229T125701Z",
"mar kupTabl e": " OTMXUXLF",
"context": "2_3",
"addi tional I nfo":
"internal Key": "7:1"

}

}

Save all TMs

Purpose Flushes all filebuffers(TMD, TMI files) into the filesystem. Reset 'Modified' flags for file buffers.
Filebuffer is a file instance of .TMD or .TMI loaded into RAM. It provides better speed and safety when working with files.
Request GET /%service%_service/savetms

Params -

Response

Response exanpl e: {

'saved 4 files': '/hone/or/.t5nmenory/ MEM nenR. TMD, /hone/or/.t5menory/ MEM nmen2. TM, /hone/or/ .t 5menory/ NEM
/I newBt ree3. TMD, /hone/or/.t5menory/ MEM newBtree3. TM '
} List of saved files

Shutdown service

Purpose | Safely shutting down the service with\without saving all loaded tm files to the disk

Request = GET /%service%_service/shutdown?dontsave=1

Params | dontsave=1(optional in address) - skips saving tms, for now value doesn't matter, only presence
If try to save tms before closing, would check if there is still import process going on

If there is some, would wait 1 second and check again.
Repeats last step up to 10 min, then closes service anyway.

Response

Response exanpl e: %&Enpt y%

Test tag replacement call

Purpose Updates entry\translation
Request POST /%service%_serviceltagreplacement
Params Required: src, trg,

Optional: req

Response

Fuzzy search tag repl acenent test:
Request exanpl e:

{

"src": "Tap <ph x="1'/>View <ph x='2' />o<bpt i='"1" x='3'/> get <ph x='4'>strong</ph>di spl ayed<ph
x="5"'>Vi ew</ ph> two strong<ept i='"1" x='6'/>US patents.",

"trg": "View <ph x="1'/> tap <ph x='2' />to<bpt i="1" x='3'/> got <ph x='4'>strong</ph>dospl ayd<ph
x="5">\ei w</ ph> two strong<ept i='"1" x='6'/>US patents.",

"req": "Tap <x id='123"/>View <x id='222" />0<g> get <x id='44'>strong</x>di spl ayed<x id='51"'>Vi ew</ x>
two strong</g>US patents."

}
Response exanpl e:
/1'"1 - request result
/1'2" - src result
/1"3" - trg result
{
1" 'Tap <x id="123"/>View <x id="222"/>0<bx/> get <x id="44"/>displayed<x id="51"/> two strong<ex/>US
patents.',
'2' 'Tap <x id="123"/>View <x id="222"/>0<g> get <x id="44"/>displayed<x id="51"/> two strong</g>US
patents.',
'3 'View <x id="123"/> tap <x id="222"/>to<g> got <x id="44"/>dospl ayd<x id="51"/> two strong</g>US
patents.',
H

Import tag repl acement test:
Request exanpl e:

{
"src": "Tap <ph/>Vi ew <ph/>o<bpt/> get <ph>strong</ph>di spl ayed<ph>Vi ew</ ph> two strong<ept/>US patents.",
"trg": "View <ph/> tap <ph/>to<bpt/> got <ph>strong</ ph>dospl ayd<ph>Vei w</ ph> two strong<ept/>US
patents.",
}
Response exanpl e:
{
‘1" ' Tap <ph x="1"/>View <ph x="2"/>o0<bpt x="3" i="1"/> get <ph x="4"/>di spl ayed<ph x="5"/> two strong<ept
x="6" i="1"/>US patents."',
"2 :'"View <ph x="1"/> tap <ph x="2"/>to<bpt x="3" i="1"/> got <ph x="4"/>dospl ayd<ph x="5"/> two strong<ept
x="6" i="1"/>US patents."',
b

Configuration of service

You can configure the service in ~/.t5service/tsmemory.conf

Logging
L Mne @ Description
e mon
v | ic
el

0 DEV | could make code work really slow, should be used only when debugging some specific places in code, like binary search in files, etc.
ELOP

1 DEB | logging values of variables. Wouldn't delete temporary files(In MEM and TMP subdirectories), like base64 encoded\decoded tmx files and
UG archives for import\export

2 | INFO logging top-level functions entrances, return codes, etc. Default value.

3 | WA | logging if we reached some commented or hardcoded code. Usually commented code here is replaced with new code, and if not, it's
RNI ' marked as ERROR level
NG

4 | ERR | errors, why and where something fails during parsing, search, etc
OR

5 | FAT | you shouldn't reach this code, something is really wrongOther values would be ignored. The set level would stay the same till you change it
AL in a new request or close the app. Logs suppose to be written into a file with date\time name under ~/.OtmMemoryService/Logs and errors
[fatal are supposed to be duplicated in another log file with FATAL suffices

6 TRA - Logs only things like begin\end of request etc. No purpose to setup this hight
NSA
CTI
ON

Logging could impact application speed very much, especially during import or export. In tsmemory there are 2 systems of logs - one from glog library
and could be set in launch as commandline parameter and one is internal to filter out logs based on their level, can be set with every request that have
json body with additional ["loggingThreshold": 0] parameter or at startup with flag.

[loggingThreshold:"2"]

Like here

POST http://localhost:4040/t5Smemory/example_tm/

{

sourceLang: “en”, // the source language is required for a new TM

name: ,TM Name*,

loggingThreshold:"2"

}

This would set the logging level to INFO just before the main work of creating mem endpoint starts. DEVELOP could be used in really low level
debugging, but most of the time DEBUG log is more useful, since DEVELOP would log a lot of logs. Transaction logs have the highest level of severity
but it's severity is also changes with -v parameter, so with --v=2 it would be the highest log level(this log is not used often, it's only to track something
like end or start of request) but with default --v=0 it's severity is belowe WARNING

http://opentm2/translationmemory/

Or in t5memory.conf file in line (config file is obsolete now)
logLevel=0
Would set the log level to DEVELOP, this would be applied only after restarting of service

glLog part - it have it's own configuration with command line flags. you can see all possible flags for tSmemory with ./tSmemory --help command.

main parameter here is --v and you can set it to 2 or O(default).

By default it set to 0, in that case all not-errors would be avoided in logs, except startup.

idea of --v=1 was to have logBuffer to keep log in some stream and in case of error show previous logs for that request, but it seems not so usefull, so it
was not fixed and it's not working properly

--v=2 is basicaly disables that buffering, so

In case of error or fatalError, log would be written with info about what request caused that log to happen(but that info would be truncated to 3000
symbols, this is important for importTMX), but if there are second error with the same request, new logs would not have that requests info

Some parameters combinations:

Default - --t5loglevel=2(T5INFO), --v=0, in this case you could see only init messages and errors only, with info about requests that caused error to
happen

Change only --v=2 - t5loglevel would be set by default to 2(T5INFO), so you could see T5INFO, TSWARNING, TSERROR, T5FATAL,
T5TRANSACTION messages

Debug production --t5loglevel=1(TSDEBUG), --v=2 - should be enough to have some info about issues, a lot of logs, but not as much as with Develop
Develop --t5loglevel=0(T5DEVELOP), --v=2 - all possible logs, includes entering to some functions, some step-by-step mechanisms logs(like how
tSmemory is parsing and hashing strings) etc. Useful only when you can reproduce issue so you don't get lost in logs from just normal behaviour or
when it's crashing etc.

It's possible to change t5loglevel with some requests, so for example for some specific update request, you can set it to some lower log level and then
set it back. It would affect other threads, but since in logs you have info about thread, it could be useful tool.

Seems like --v parameter it's not quite useful, maybe should be refactored, since with --v=0 you wouldn't get any messages with severity lower than
T5ERROR, except init process.
But gLog library could be connected to some other libs in proxygen package

Here are all glog flags:
Flags from src/logging.cc:

-alsologtoemail (log messages go to these email addresses in addition to
logfiles) type: string default: "

-alsologtostderr (log messages go to stderr in addition to logfiles)
type: bool default: false

-colorlogtostderr (color messages logged to stderr (if supported by
terminal)) type: bool default: false

-drop_log_memory (Drop in-memory buffers of log contents. Logs can grow
very quickly and they are rarely read before they need to be evicted from
memory. Instead, drop them from memory as soon as they are flushed to
disk.) type: bool default: true

-log_backtrace_at (Emit a backtrace when logging at file:linenum.)
type: string default: ™

-log_dir (If specified, logfiles are written into this directory instead of
the default logging directory.) type: string default: "™
currently: "/root/.t5memory/LOG/"

-log_link (Put additional links to the log files in this directory)
type: string default: ™

-log_prefix (Prepend the log prefix to the start of each log line)
type: bool default: true

-logbuflevel (Buffer log messages logged at this level or lower (-1 means
don't buffer; 0 means buffer INFO only; ...)) type: int32 default: 0

-logbufsecs (Buffer log messages for at most this many seconds) type: int32
default: 30

-logemaillevel (Email log messages logged at this level or higher (0 means
email all; 3 means email FATAL only; ...)) type: int32 default: 999

-logfile_mode (Log file mode/permissions.) type: int32 default: 436

-logmailer (Mailer used to send logging email) type: string
default: "/bin/mail”

-logtostderr (log messages go to stderr instead of logfiles) type: bool
default: false

-max_log_size (approx. maximum log file size (in MB). A value of 0 will be
silently overridden to 1.) type: int32 default: 1800

-minloglevel (Messages logged at a lower level than this don't actually get
logged anywhere) type: int32 default: 0

-stderrthreshold (log messages at or above this level are copied to stderr
in addition to logfiles. This flag obsoletes --alsologtostderr.)
type: int32 default: 2

-stop_logging_if _full_disk (Stop attempting to log to disk if the disk is
full.) type: bool default: false

http://logging.cc

Working directory

Path Description

~/. The main directory of service. Should always be under the home directory. Consists of nested folders and tSmemory.conf file(see Config
tSmemory | file). All directories\files below are nested

LOG lincludes log files. It should be cleanup manualy. One session(launch of service) creates two files Log_Thu May 12 10:15:48 2022 .log and
Log_Thu May 12 10:15:48 2022 .log_IMPORTANT
Last have logs reduced to level Warning and higher.

MEM Main data directory. All tm files is stored here. One TM should include .TMD(data file), .TMI(index file), .MEM(properties file) with the same
name as TM name

TABLE Services reserved readonly folder with tagtables, languages etc.

TEMP For temporary files that were created for mainly import\export. On low debug leved(DEVELOP, DEBUG) should be cleaned manualy

tSmemory = Main config file(see config file)
.conf

Config directory should be located in a specific place

Config file - obsolete - use commandline flags instead

field def | Description
ault

name t5m | name of service that we use under %service% in address

em

ory
port 8080 service port
timeout = 3600 service timeout
threads | 1
logLevel @ 2 logLevel - > see logging
Allowed = 1500 Ram limit to operate openning\closing TM(see Openning and closing TM)
RAM_MB

Doesn't include services RAM

in Megabytes

TriplesT | 33 Level of pre-fuzzy search filtering based on combinations of triples of tokens(excluding tags). Could impact fuzzy search perfomance.
hreshold For higher values service is faster, but could skip some segments in result. Not always corelated with resulted fuzzyRate

Config file should be located under ~/.tSmemory/t5memory.conf
Anyway, all field has default values so the service could start without the conf file
Reading\applying configs happen only once at service start

Once service started you should be able to see setup values in logs.
Config file example:

Response

nanme=t 5menory
por t =4040

ti meout =3600

t hreads=1

| ogLevel =0

Al | owedRAM MB=200
Tri pl esThreshol d=5

Conceptional information

Openning and closing T™M

In first concept it was planned to implement routines to open and close a TM. While concepting we found some problemes with this approach:

® First one is the realization: opening and closing a TM by REST would mean to update the TM Resource and set a state to open or close. This is
very awkward.

® Since in translate5 multiple tasks can be used to the same time, multiple tasks try to access one TM. Closing TMs is getting complicated to prevent
race conditions in TM usage.

® Since OpenTM2 loads the whole TM in memory, OpenTM2 must control itself which TMs are loaded or not.

This leads to the following conclusion in implementation of opening and closing of TMs:

OpenTM2 has to automatically load the requested TMs if requested. Also OpenTM2 has to close the TMs after a TM was not used for some time. That
means that OpenTM2 has to track the timestamps when a TM was last requested.

Concept endpoints, not implemented

For now we open TM in case of call to work with it. TM stays opened till the shutdown we wouldn't try to open more TM's, exceeding the RAM limit
setupped in config file.

In that case we would close TM in order of longest not used, till we would fit in limit including TM that we try to open.

TM size is calcucated basicaly as sum .TMD and .TMI files

Ram limit doesn't include service RAM and temporary files

TM files structure and other related info

http://opentm2/translationmemory/%5BTMID%5D/
http://opentm2/translationmemory/%5BTMID%5D/
http://opentm2/translationmemory/%5BTMID%5D/
http://opentm2/translationmemory/%5BTMID%5D/
http://opentm2/translationmemory/%5BTMID%5D/
http://opentm2/translationmemory/%5BTMID%5D/

Info below is actual for version 0_5_x

Starting from version 0_5_0 .mem file is excluded from TM files - tm now consists only with .tmd and .tmi files. That files have 2kb headers which have
some useful information, like creation date and version in which that file was created. In general, changing mid_version number means binary
incompatible files. During reorganize there would be created new empty tm and then segments would be reimported from previous, and then old files
would be deleted and new ones would be renamed to replace old files. That means that reorganize would also update creation tsmemory version of files
to the newest.

TM file is just archive with tmi and tmd files.
tmd and tmi files should be flushed in a safe way - saved on disk with temporary filename and then replacing old files.(Should be implemented)

There is tmmanager(as singletone) which have list of tm, and one tm instance have two binary trees(for both (tmd)data and (tmi)index files), with each
have own filebuffer instance(before there used to be a pool of filebuffers and it's files operation functions, like write, read, close and open was handling
requests).

Request handler - it's an instance of class in request handler hierarhy classes. For each type of requests there is class to handle it. In general it have
private functions "parseJSON"(would parse json if provided and would return error if json is invalid), "checkData"(whould check if all required fields was
provided), "requestTM"(would request readOnly, write or service tm handlers. It would load tm if it is not loaded in RAM yet) and "execute" - original
requests code. And also it has public function "run" which is stategy template to operate listed private function.

The TMs is saved in TMManager using smart pointers(it's pointer which track references to itself and call destructor automaticaly). That means that on
request it's possible to clear list from some TM, while it would still be active in other thread(like in fuzzy search). Then ram would be freed at the end of
last request handling that TM.

In case if in the middle of some request(like fuzzy search) there was a call to delete tm, first we clear TMlist(but we keep smart pointer in fuzzy requests
thread, so this is not calling destructor yet, but would after fuzzy request would be done). Destructor would try to flush filebuffer into filesystem but
because there is no files in the disk, filebuffers would not create them again and it would just clean the RAM(in that case log would be writen about
filebuffer flush not founding file in the folder).

From TMManager, request could ask for one of 3 types of tm handers - readonly, write or service. ReadOnly\write requests here have it's name from
inside-tm perspective(so operations with tm files in filesystem is service requests).

ReadOnly(concordance search, fuzzy search, exportTmx) would be provided if there is no write handlers, for write handlers(deleteEntry, updateEntry,
importTmx) there should be no other write handlers and no readOnly handlers. Service handlers could mean different for different requests. For example
status request should be able to access something like readonly handler, but it shouldn't be blocked if there is any write requests, since it's used for
checking import\reorganize status and progress. For some filesystem requests(deleteTM, createTM, cloneTM, importTM, exportTM(internal format))
there should be other blocking mechanism, since most of them even doesn't require to load tm into the ram.

In case if tm is not in RAM, requesting handler from TMManager would try to load TM into the RAM, considering RAM limit explained in this document.

NUMBER PROTECTION TAGS (NP TAG, t5:n)

NP Feature is also implemented in tagReplacer, but it has other branch in code - for import it's just saves original id, r and n attributes, without
generating new, for fuzzy requests it's just outputs original data without searching for mathing tag in src and trg. So NP tags is influence ID generation
for other tags(or matching if it's trg segment).

For fuzzy requests TagReplacer would use GenerateNormalizedString to generate copy of string for src and input(from fuzzy request) where NP tags
would be replaced with their r attribute(to be equal to 1 word in match) and then in fuzzy calculation other tags would be removed.

So

"Press the <t5:n id="5" r="encodedRegex" n="25th of 2043"/>, power button to turn on <bpt x="501" i="1"/>text<ept i="1"/>

for fuzzy requests would give you

"Press the encodedRegex, power button to turn on <bpt id="501" rid="1"/>text<ept rid="1"/>"
first and for fuzzy calculation it would become:
"Press the encodedRegex, power button to turn on text"

and saved segment would be:
"Press the <t5:nid="5" r="encodedRegex" n="2nd of 1999"/>, power button to turn on the <bpt id="501" rid="1"/>text<ept rid="1"/>"
would become

"Press the encodedRegex, power button to turn on the text"
And fuzzy match would give you 92% because it counted 13 words and 1 diff. [(13-1)/13 =0.92]

Tag replacement
Pseudocode for tag replacement in import call:

TAG_REPLACEMENT PSEUDO CODE

This is the pseudo code, that was used as a discussion base for finding the right algorithm for implementation. It was not exactly implemented
like this, but it's logic should be valid and can be used to understand, what should be going on.

Pseudocode for tag replacement in import call:
TAG_REPLACEMENT PSEUDOCODE
struct Taglnfo

bool f PairTagC osed = true; /1l false for bpt tag - waiting for natching ept tag. If we'll find
matching tag -> we'll set this to true

bool fTagAl readyUsedl nTarget = false; // would be set to true if we would already use this tag as matching
for target

/1 this we generate to save in TM this would be saved as <{generated_tagType} [x={generated_x}] [i=
{generated_i}]/>.
/1 we would skip x attribute for generated_tagType=EPT_ELEMENT and i for generated_tagType=PH_ELEMENT

int generated_i = -1; /1 for pair tags - generated identifier to find matching tag. the same
as inoriginal _i if it's not binded to other tag in segnent
int generated_x = -1; /1 id of tag. should match original_x, if it's not occupi ed by other

t ags
TagType generated_tagType = UNKNOAN_ELEMENT; // replaced tagType, could be only PH ELEMENT, BPT_ELEMENT,
EPT_ELEMENT

/1 this cant be generated, only saved from provi ded data

int original i =-1; /1 original paired tags i
int original _x = -1; /1 original id of tag
TagType original _tagType = UNKNOAN_ELEMENT; // original tagType, could be any tag

}
}

TagType coul d be one of the values in enum
[
BPT_ELEMENT EPT_ELEMENT G ELEMENT HI _ELEMENT SUB_ELEMENT BX_ELEMENT EX_ELEMENT

/] st andal one tags
BEG N_STANDALONE _TAGS PH ELEMENT X ELEMENT | T_ELEMENT UT_ELEMENT
]

we use 3 lists of tags

SOURCE_TAGS
TARGET_TAGS
REQUEST_TAGS
as id we understand one of follow ng attributes(which is present in original tag) : 'x', "id'
as i we understand one of follow ng attributes(which is present in original tag) : 'i', 'rid

all single tags we understand as ph_tag

all opening pair tags we understand as bpt_tag

all closing pair tags we understand as ept_tag

-1 neans that value is not found/ not used/not provided etc.

for ept tags in generated_id we would use generated_id fromnatching bpt tag
if matching bpt tag is not found -> ???

TagType coul d be set to one of follow ng val ues

TAG REPLACEMENT USE CASES {
| MPORT{
SOURCE_SEGMVENT{
<single tags> -> would be saved as <ph>{ // for ph and all single tags

if(type == "I1b"){
replace with newine
}el sef

generate next generated_id increnmentally
ignore content and attributes(except id) if provided
set generated_tagType to PH_ELEMENT

save original _tagType for natching
if id provided -> save as original _id for matching

save tag to SOURCE_TAGS

}

<opening pair tags> -> woul d be saved as <bpt>{
original type is <bpt>{
generate generated_i increnmentally in source segment
generate generated_id increnental ly

set generated_tagType to BPT_ELEMENT

save original _i (should that always be provided??)

save original _id if provided (should that always be provided??)

set fPairTagC osed to false; // it would be set to true if we would use this tag as matching
set original _type as BPT_ELEMENT

save tag to SOURCE_TAGS

hat al ways be provi ded??)

it would be set to true if we would use this tag as matching

it would be set to true if we would use this tag as matching

}
original type is <bx>{
generate generated_i incrementally in source segment
generate generated_id increnental ly
set generated_tagType to BPT_ELEMENT
save original _i (should that always be provided??)
save original _id if provided (should t
set fPairTagC osed to false; //
set original _type as BX_ELENMENT
save tag to SOURCE_TAGS
}
original type is other openning pair tags(like <g>){
generate generated_i incrementally in source segment
generate generated_id increnental ly
set generated_tagType to BPT_ELEMENT
set fPairTagd osed to false; //
save tag type as original _tagType;
save tag to SOURCE_TAGS
}

}

<closing pair tags> -> woul d be saved as <ept >{

original type is <ept>{
search for matching bpt_tag in saved t

//should we ook in reverse order?

ags

| ooki ng in SOURCE_TAGS for matchingTag which have [

AND
//1all OPENI NG PAIR TAGs al ways has BPT_ELEMENT here
AND

AND

]
if found
set matchi ngTag. f Pai r TagCl osed to
different closing tags
set our_ept_tag.i to matchingTag.
set our_ept_tag.id to matchingTag.
el se

generate next our_ept_tag. generated_i

(target, source, request) i starts froml

generate next our_ept_tag.generated_id increnmentally

uni que across target, source and request segnments

save tag i n SOURCE_TAGS
}

original type is <ex>{

mat chi ngTag. f Pai r TagCl osed == fal se
mat chi ngTag. gener at ed_t agType == BPT_ELEMENT
mat chi ngTag. ori gi nal _tagType == BPT_ELEMENT

mat chi ngTag. ori gi nal _i == our _ept_tag.original _i

true to elimnate matching one opening tag for

i
id
increnentally in source segnent // in every segnent

/'l shoul d be

search for matching bpt_tag in saved tags

//should we ook in reverse order?

| ooki ng i n SOURCE_TAGS for natchingTag which have [

AND
/1all OPENING PAIR TAGs has BPT_ELEMENT here
AND

AND

|
if found
set matchi ngTag. f Pai r TagCl osed to
different closing tags
set our_ept_tag.i to matchingTag.
set our_ept_tag.id to natchingTag.
el se

generate next our_ept_tag.generated_i

segnent (target, source, request) i starts from1l

generate next our_ept_tag.generated_id increnentally

uni que across target, source and request segnents

save tag i n SOURCE_TAGS
}

ori gi nal

mat chi ngTag. f Pai r Tagd osed == fal se
mat chi ngTag. gener at ed_t agType == BPT_ELEMENT

mat chi ngTag. ori gi nal _t agType
mat chi ngTag. ori gi nal _i

BX_ELENMENT
our _ept _tag. original _i

true to elimnate matching one opening tag for

i
id
11

increnentally in source segnent in every

/1 shoul d be

type is others closing pair tags(like </g>){

search for matching bpt_tag in saved tags:

I ooki ng in SOURCE_TAGS i n REVERSE

for matchingTag whi ch have

mat chi ngTag. f Pai r TagCl osed == fal se

http://our_ept_tag.id
http://matchingTag.id
http://our_ept_tag.id
http://matchingTag.id

AND mat chi ngTag. gener at ed_t agType ==
BPT_ELENMENT /| OPENI NG_PAI R_TAG

AND mat chi ngTag. ori gi nal _tagType ==
our_tag.original _tagType

|
if found
set matchingTag. f Pai r TagCl osed to true to elinminate matching one opening tag for
different closing tags

set our_tag.generated_i to matchingTag.i
set our_tag.generated_id to matchingTag.id
el se
generate next our_tag.generated_i increnmentally in source segnent // in every segnent
(target, source, request) i starts from1l
generate next our_tag.generated_id increnentally /1 shoul d be uni que

across target, source and request segnments

save tag i n SOURCE_TAGS

TARGET_SEGVENT{
<single tags> -> would be saved as <ph>{ // for ph and all single tags

if(type == "I1b"){
replace with newine
}el sef

ignore content and attributes(except id) if provided
save original _tagType for natching

if id provided -> save as original _id for matching

search for matching ph_tag in saved tags
I ooki ng in SOURCE_TAGS for matchingTag which have [
mat chi ngTag. f TagAl readyUsedl nTarget == fal se

AND mat chi ngTag. gener at ed_t agType == PH_ELEMENT

/1 SI NGLE TAG
AND mat chi ngTag. ori gi nal _tagType == our_ph_tag.

origi nal _tagType
AND mat chi ngTag. original _id == our_ph_tag.original _id

]
if found
set matchi ngTag. f TagAl readyUsedl nTarget = true
set our_ph_tag.generated_id = matchingTag. generated_id // use id generated for source
segment
el se
generate new our _ph_tag. generated_id increnental | y(shoul d be uni que for SOURCE and
TARGET)

save tag in TARGET_TAGS // we should track only opening pair tags in target, so theoretically
can skip this step

}

<openi ng tags> -> woul d be saved as <bpt>{
original type is <bpt>{
set generated_tagType to BPT_ELEMENT
save original _i (should that always be provided??)
save original _id if provided (should that always be provided??)
set fPairTagCl osed to false; // it would be set to true if we would use this tag as matching
set original _type as BPT_ELEMENT

try to found nmatching source tag to get generated id:
| ooki ng in SOURCE_TAGS for matchingTag which have [
mat chi ngTag.
f TagAl r eadyUsedl nTar get == fal se
AND mat chi ngTag.
gener at ed_t agType == BPT_ELEMENT /lall OPENI NG PAIR TAGs al ways has BPT_ELEMENT here
AND nmat chi ngTag.

original _tagType == BPT_ELEMENT
AND mat chi ngTag.
original _id == our_bpt _tag.original _id
]
if found:
set matchi ngTag. f TagAl readyUsedl nTarget to true
generate our_bpt_tag.generated_i increnentally in target segment
set our _bpt _tag. generated_id to natchi ngTag. generated_id
el se:
generate our_bpt_tag.generated_i increnmentally // unique between all segnents

generate our_bpt_tag.generated_id increnentally // unique between all
segment s

http://matchingTag.id

save tag in TARGET_TAGS
}

original type is <bx>{
set generated_tagType to BPT_ELEMENT
save original _i (should that always be provided??)
save original _id if provided (should that always be provided??)
set fPairTagCO osed to false; // it would be set to true if we would use this tag as matching
set original _type as BX_ELENMENT

try to found matching source tag to get generated id:
| ooki ng in SOURCE_TAGS for matchingTag which have [
mat chi ngTag.
f TagAl r eadyUsed| nTar get == fal se
AND nmat chi ngTag.
gener at ed_t agType == BPT_ELEMENT /lall OPENI NG PAIR TAGs al ways has BPT_ELEMENT here
AND mat chi ngTag.

original _tagType == BX_ELEMENT
AND mat chi ngTag.
original _id == our_bpt_tag.original _id
1
if found:
set matchingTag. f TagAl readyUsedl nTarget to true
generate our_bpt _tag.generated_i increnentally in target segnent
set our _bpt _tag. generated_id to natchi ngTag. generated_id
el se:
generate our_bpt_tag.generated_i increnmentally // unique between all segnents
generate our_bpt_tag.generated_id increnentally // unique between all
segnment s
save tag in TARGET_TAGS
}
original type is other openning pair tags(like <g>){
set generated_tagType to BPT_ELEMENT
we never have here original i attribute
save original _id if provided (should that always be provided??)
set fPairTagClosed to false; // it would be set to true if we would use this tag as matching
save original _type
try to found nmatching source tag to get generated id:
| ooki ng in SOURCE_TAGS for nmatchingTag which have [
mat chi ngTag.
f TagAl r eadyUsedl nTar get == fal se

AND mat chi ngTag.
gener at ed_t agType == BPT_ELEMENT /lall OPENI NG PAIR TAGs al ways has BPT_ELEMENT here
AND nmat chi ngTag.

original _tagType == our_tag. original _tagType
AND mat chi ngTag.
original _id == our_tag.original _id
]
if found:
set matchi ngTag. f TagAl readyUsedl nTarget to true
generate our_tag.generated_i increnentally in target segnent
set our _tag.generated_id to matchingTag. generated_id
el se:
generate our_tag.generated_i increnmentally // unique between all segnents
generate our_tag.generated_id increnmentally // unique between all
segnents
save tag i n TARGET_TAGS
}
}
<closing tags> -> woul d be saved as <ept>{
original type is <ept>{
try to found natching bpt tag i n TARGET_TAGS
| ooki ng in TARGET_TAGS for matchingTag which have [
mat chi ngTag.
f Pai r Tagd osed == fal se

AND mat chi ngTag.
gener at ed_t agType == BPT_ELEMENT //all OPENI NG PAIR TAGs al ways has BPT_ELEMENT here
AND mat chi ngTag.
original _tagType == BPT_ELEMENT
AND mat chi ngTag. ori gi nal _i
== our_tag.original _i

if found:
set mat chi ngTag. f Pai r Tagd osed to true
set our _tag.generated_id to matchingTag. generated_id
set our_tag.generated_i to matchingTag. generated_i

el se:

generate our_tag.generated_i increnmentally // unique between all segnents
generate our_tag.generated_id incrementally // unique between all segnents

save tag in TARGET_TAGS // we should track only opening pair tags in target, so theoretically
can skip this step

original type is <ex>{
try to found matching bpt tag i n TARGET_TAGS
I ooki ng in TARGET_TAGS for matchingTag whi ch have [
mat chi ngTag.
f Pai r TagCl osed == fal se
AND mat chi ngTag.
gener at ed_t agType == BPT_ELEMENT //all OPENI NG PAIR TAGs al ways has BPT_ELEMENT here
AND mat chi ngTag.

origi nal _tagType == BX_ELEMENT
AND mat chi ngTag.
original _i == our_tag.original _i
1
if found:
set mat chi ngTag. f Pai r Tagd osed to true
set our _tag.generated_id to matchingTag. generated_id
set our_tag.generated_i to matchingTag. generated_i
el se:
generate our_tag.generated_i increnmentally // unique between all segnents

generate our_tag.generated_id incrementally // unique between all segnents

save tag in TARGET_TAGS // we should track only opening pair tags in target, so theoretically
can skip this step

original type is others closing pair tags(like </g>){

search for matching bpt_tag in saved tags:
| ooki ng in TARGET_TAGS i n REVERSE for matchi ngTag whi ch have
nmat chi ngTag. f Pai r TagCl osed == fal se
AND mat chi ngTag. gener at ed_t agType ==
BPT_ELENMENT /1 OPENI NG_PAI R_TAG
AND mat chi ngTag. ori gi nal _tagType ==
our _tag.original _tagType

]
if found:
set matchi ngTag. f Pai r TagCl osed to true to elimnate natchi ng one opening tag for
different closing tags

set our_tag.generated_i to natchingTag.i
set our_tag.generated_id to natchingTag.id
el se :
generate next our_tag.generated_i increnentally in target segnent // in every segnent
(target, source, request) i starts froml
generate next our_tag.generated_id increnentally /'l shoul d be uni que

across target, source and request segnents

save tag in TARGET_TAGS // we should track only opening pair tags in target, so theoretically
can skip this step

}

Tag repl acenent for fuzzy request pseudocode:
TAG_REPLACEMENT PSEUDOCODE
struct Taglnfo

bool f PairTagC osed = true; /] false for bpt tag - waiting for matching ept tag. If we'll find
matching tag -> we'll set this to true

bool fTagAl readyUsedlnTarget = false; // would be set to true if we would already use this tag as matching
for target

/1 this we generate to save in TM this would be saved as <{generated_tagType} [x={generated_x}] [i=
{generated_i}]/>.
we woul d skip x attribute for generated_tagType=EPT_ELEMENT and i for generated_tagType=PH_ELEVENT

http://matchingTag.id

int generated_i = -1; /1 for pair tags - generated identifier to find matching tag. the sane
as inoriginal _i if it's not binded to other tag in segnent

int generated_x = -1; /] id of tag. should match original_x, if it's not occupied by other
tags

TagType generated_tagType = UNKNOAN_ELEMENT; // replaced tagType, could be only PH ELEMENT, BPT_ELEMENT,
EPT_ELEMENT

/1 this cant be generated, only saved from provi ded data

int original _i = -1; /1 original paired tags i
int original _x = -1; /1 original id of tag
TagType original _tagType = UNKNOAWN_ELEMENT; // original tagType, could be any tag
|
}
we use 3 lists of tags
SOURCE_TAGS
TARGET_TAGS
REQUEST_TAGS
as id we understand one of follow ng attributes(which is present in original tag) : 'x', "id'
as i we understand one of following attributes(which is present in original tag) iy trid

all single tags we understand as ph_tag

all opening pair tags we understand as bpt_tag

all closing pair tags we understand as ept_tag

-1 neans that value is not found/not used/not provided etc.

for ept tags in generated_id we would use generated_id from matching bpt tag
if matching bpt tag is not found -> ???

TagType coul d be set to one of follow ng val ues

TAG REPLACEMENT USE CASES {

REQUEST{
basically we convert request segment to tmx tags(similar as we generate ph, bpt and ept tags at import), but with saving original data
then we try to find matching tags from the source to generated from the request. In matching source tags we replace data with original from request
(tagType, id and i attributes)
then do the same with target segment\tags

REQUEST_SEGMENT{
are we sending only xliff? so ph, bpt and ept tag shouldn't be handled here?

<single tags> { // for ph and all single tags
/I here we can have PH, X, IT, UT tags, right?
generate generated_id incrementally
set generated_tagType to PH_ELEMENT

save original_id if provided (should that always be provided??)
save tag type as out_tag.original_tagType

save tag in REQUEST_TAGS
}

<opening tags> {
/Ithis would be never send from translate5, right?
original type is <bpt>{
save tag in REQUEST_TAGS
}

original type is <bx>{
generate generated_i incrementally in source segment
generate generated_id incrementally
set generated_tagType to BPT_ELEMENT

save original_i (should that always be provided??)

save original_id if provided (should that always be provided??)

set fPairTagClosed to false; // it would be set to true if we would use this tag as matching
set fTagAlreadyUsedInTarget to false;

set original_type as BX_ELEMENT

save tag to REQUEST_TAGS

original type is <g>{
generate generated_i incrementally in source segment
generate generated_id incrementally
set generated_tagType to BPT_ELEMENT

we don't have original_i provided here, only original_id, right?
save original_id if provided (should that always be provided??)
set fPairTagClosed to false; // it would be set to true if we would use this tag as matching

set fTagAlreadyUsedInTarget to false;
set original_type as G_ELEMENT

save tag in REQUEST_TAGS
}

original type is <hi>{
generate generated_i incrementally in source segment
generate generated_id incrementally
set generated_tagType to BPT_ELEMENT

we don't have original_i provided here, only original_id, right?

save original_id if provided (should that always be provided??)

set fPairTagClosed to false; // it would be set to true if we would use this tag as matching
set fTagAlreadyUsedInTarget to false;

set original_type as HI_ELEMENT

save tag in REQUEST_TAGS
}

original type is <sub>{
generate generated_i incrementally in source segment
generate generated_id incrementally
set generated_tagType to BPT_ELEMENT

we don't have original_i provided here, only original_id, right?

save original_id if provided (should that always be provided??)

set fPairTagClosed to false; // it would be set to true if we would use this tag as matching
set fTagAlreadyUsedInTarget to false;

set original_type as HI_ELEMENT

save tag in REQUEST_TAGS

}

<closing tags> {
/lthis would be never send from translate5, right?
original type is <ept>{
save tag in REQUEST_TAGS
}

original type is <ex>{
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
[matchingTag.fPairTagClosed == false
AND matchingTag.generated_tagType == BPT_ELEMENT //IOPENING_PAIR_TAG
AND matchingTag.original_tagType == BX_ELEMENT // our_tag.original_tagType
AND matchingTag.original_i == our_tag.original_i

]
if found
set matchingTag.fPairTagClosed to true to eliminate matching one opening tag for different closing tags
set our_tag.generated_i to matchingTag.i
set our_tag.generated_id to matchingTag.id

else
generate next our_tag.generated_i incrementally in request segment // in every segment(target, source, request) i starts from 1
generate next our_tag.generated_id incrementally I/ should be unique across target, source and request segments

save tag in REQUEST_TAGS

}

original type is </g>{
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
[matchingTag.fPairTagClosed == false
AND matchingTag.generated_tagType == BPT_ELEMENT //IOPENING_PAIR_TAG
AND matchingTag.original_tagType == G_ELEMENT // our_tag.original_tagType

]
if found
set matchingTag.fPairTagClosed to true to eliminate matching one opening tag for different closing tags
set our_tag.generated_i to matchingTag.i
set our_tag.generated_id to matchingTag.id

else
generate next our_tag.generated_i incrementally in request segment // in every segment(target, source, request) i starts from 1
generate next our_tag.generated_id incrementally /I should be unique across target, source and request segments

save tag in REQUEST_TAGS
}

http://matchingTag.id
http://matchingTag.id

original type is </hi>{
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
[matchingTag.fPairTagClosed == false
AND matchingTag.generated_tagType == BPT_ELEMENT /IOPENING_PAIR_TAG
AND matchingTag.original_tagType == HI_ELEMENT // our_tag.original_tagType

]
if found
set matchingTag.fPairTagClosed to true to eliminate matching one opening tag for different closing tags
set our_tag.generated_i to matchingTag.i
set our_tag.generated_id to matchingTag.id

else
generate next our_tag.generated_i incrementally in request segment // in every segment(target, source, request) i starts from 1
generate next our_tag.generated_id incrementally /I should be unique across target, source and request segments

save tag in REQUEST_TAGS
}

original type is </sub>{
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
[matchingTag.fPairTagClosed == false
AND matchingTag.generated_tagType == BPT_ELEMENT /IOPENING_PAIR_TAG
AND matchingTag.original_tagType == SUB_ELEMENT // our_tag.original_tagType

]
if found
set matchingTag.fPairTagClosed to true to eliminate matching one opening tag for different closing tags
set our_tag.generated_i to matchingTag.i
set our_tag.generated_id to matchingTag.id

else
generate next our_tag.generated_i incrementally in request segment // in every segment(target, source, request) i starts from 1
generate next our_tag.generated_id incrementally I/ should be unique across target, source and request segments

save tag in REQUEST_TAGS
}

http://matchingTag.id
http://matchingTag.id

IIICONSIDER THAT WE SHOULD HAVE IN SOURCE SEGMENT ONLY 3 TYPES OF TAGS - PH_ELEMENT, BPT_ELEMENT and EPT_ELEMENT,
because all of them was regenerated with their attributes at import stage

At this point we read the source and target segments "as is", without any tag replacement in lists. so original_id would be id, that was generated_id at
import stage.

SOURCE_SEGMENT{
<ph x="1"/>{
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
matchingTag.generated_tagType == PH_ELEMENT //or our_tag.original_tagType
AND matchingTag.generated_id == our_tag.original_id

]
if found
set our_tag.generated_tagType = matchingTag.original_tagType
set our_tag.generated_id = matchingTag.original_id
use that that data to generate tag like <our_tag.generated_tagType id="{our_tag.generated_id}" />
else
maybe just return <x/> tag?

save tag in SOURCE_TAGS

}

<bpt i="1" x="2"/> {
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
[matchingTag.generated_tagType == BPT_ELEMENT //or our_tag.original_tagType
AND matchingTag.generated_id == our_tag.original_id

]
if found
set our_tag.generated_tagType = matchingTag.original_tagType
set our_tag.generated_id = matchingTag.original_id
set our_tag.generated_i = matchingTag.original_i

if matchingTag.original_tagType == BX_ELEMENT // do BX_ELEMENT always have id and rid attributes provided?
use that that data to generate tag like <our_tag.generated_tagType id="{our_tag.generated_id}" rid="{our_tag.generated_id}" />
else:
[rid="{our_tag.generated_id}"] - means optional, so for example if it's bigger than 0, then we should add this attribute
use that that data to generate tag like <our_tag.generated_tagType [id="{our_tag.generated_id}"] [rid="{our_tag.generated_id}"] >
else
maybe just return <bx/>tag?

save tag in SOURCE_TAGS
}

<epti="1"/>{
search for matching tag in saved tags:
looking in REQUEST_TAGS in REVERSE for matchingTag which have
[matchingTag.generated_tagType == EPT_ELEMENT //or our_tag.original_tagType
AND matchingTag.generated_id == our_tag.original_id // id should hold information about paired

]
if found
set our_tag.generated_tagType = matchingTag.original_tagType
set our_tag.generated_id = matchingTag.original_id
set our_tag.generated_i = matchingTag.original_i
use that that data to generate tag like <our_tag.generated_tagType id="{our_tag.generated_id}" rid="{our_tag.generated_id}" />

BPT_ELEMENT, or it's absence

if matchingTag.original_tagType == EX_ELEMENT // do EX_ELEMENT always have id and rid attributes provided?
use that that data to generate tag like <our_tag.generated_tagType id="{our_tag.generated_id}" rid="{our_tag.generated_id}" />
else:
[rid="{our_tag.generated_id}"] - means optional, so for example if it's bigger than 0, then we should add this attribute
use that that data to generate tag like </our_tag.generated_tagType>
else
maybe just return <ex/> tag? or add some specific attributes?

save tag in SOURCE_TAGS

}
}

NEW PSEUDO CODE

This is the code, actually implemented

Tag replacement feature implementation is splited into 2 functions:
GenerateReplacingTag - input - tagType, attributeList
output - taginfo
this function would generate taginfo data structure that saves original data(tagType, attributes(i\rid and x\id only) and would generate new data that suits
context\segment
PrintTag - input - taginfo
- output - text representation of tag with attributes depending on context
this function would print tag with attributes(if they exist(bigger than 0). If it's fuzzy call, would replace for source and target segments tags with matching
tags from fuzzy search request.
If matching tag not found - would generate new tag in xliff format with id or rid attributes that rising starting from biggest id and rid values +1 that was
present in requested segment
for fuzzy search request segment this function would pring tag with generated data - that is never used in production, but can be used to find out how
mechanism normalized input fuzzy search request segment
(we base tag matching on this normalization.)

M

struct TaglInfo

{
bool fPairTagClosed = true; /[false for bpt tag - waiting for matching ept tag. If we'll find matching tag -> we'll set this to true
bool fTagAlreadyUsedInTarget = false; // would be set to true if we would already use this tag as matching for target

/I this we generate to save in TM. this would be saved as <{generated_tagType} [x={generated_id}] [i={generated_i}]/>.

/I we would skip x attribute for generated_tagType=EPT_ELEMENT and i for generated_tagType=PH_ELEMENT

int generated_i = -1; /I for pair tags - generated identifier to find matching tag. the same as in original_i if it's not binded to other tag in segment
int generated_id = -1; /I id of tag. should match original_id, if it's not occupied by other tags

TagType generated_tagType = UNKNOWN_ELEMENT; // replaced tagType, could be only PH_ELEMENT, BPT_ELEMENT, EPT_ELEMENT

/I this cant be generated, only saved from provided data
int original_i = -1; /I original paired tags i
int original_id = -1; /l original id of tag
TagType original_tagType = UNKNOWN_ELEMENT; // original tagType, could be any tag
h
}

TagType could be one of the values in enum:

BPT_ELEMENT EPT_ELEMENT G_ELEMENT HI_ELEMENT SUB_ELEMENT BX_ELEMENT EX_ELEMENT
/Istandalone tags
BEGIN_STANDALONE_TAGS PH_ELEMENT X_ELEMENT IT_ELEMENT UT_ELEMENT

]

We make normalization process to tags which means to replace original xlifitmx tags\attributes with only 3 tags:
<ph x="1"/>
<bptx="2'i="1"'/>
<epti="1l"'/>

which means that we would regenerate id\x in source, target and request segments to make them unified

for sourceltarget segments this replacement is done at import process, for fuzzy search request we do tag replacement, then look for matches between
source and request segments(this happens in PringTag function), then replace tag from source with original tag that was in request
then we do the same with target segment - we try to find matches of target tags with generated tags in request, and then replace tags in target

with original tags from fuzzy search request

for example, we have this segments in import process
'source’:"Select the <hi>net<ph/>work <g>BLK360</g> tag </hi>",
‘target":"Select the <hi>net<ph/>work <g>BLK360</g> tag </hi>",
after tag replacement we would have this saved in tm:
'source’ :'Select the <bpt x="1" i="1"/>net<ph x="2"/>work <bpt x="3" i="2"/>BLK360<ept i="2"/> tag <ept i="1"/>',
‘target' :'Select the <bpt x="1" i="1"/>net<ph x="2"/>work <bpt x="3" i="2"/>BLK360<ept i="2"/> tag <ept i="1"/>',

then if we would have fuzzy request call with segment:
"Select the <g>net<x/>work <g>BLK360</g> tag </g>"
after normalization we would get this:
"Select the <bpt x="1" i="1"/>net<ph x="2"/>work <bpt x="3" i="2"/>BLK360<ept i="2"/> tag <ept i="1"/>"

and then we would try to find matching tags in source and normalized request segments and in case of match-replace tag in src with original from fuzzy
search request and then do the same with target and request

in response we should have:

'source' :'Select the <g>net<x/>work <g>BLK360</q> tag </g>',

‘target' :'Select the <g>net<x/>work <g>BLK360</g> tag </g>',

HHHHHHHnnnTagReplacer class/iiiiiiim

tag normalization statements:

- all single tags we understand as ph_tag that have only x attribute, and looks like this: "<ph x="1"/>"

- all opening pair tags we understand as bpt_tag that always have both i and x attributes, and looks like this: "<bpt x="1" i="1"/>"
- all closing pair tags we understand as ept_tag that always have only i attribute looks like this: "<ept i="1"/>"

- we ignore/skip context within <bpt> and </bpt> and replace this with single <bpt/> type tag, same is true for <ph/> and <ept/>
- as id we understand one of following attributes(which is present in original tag) : 'x', 'id'

-asi we understand one of following attributes(which is present in original tag) : "', 'rid’

TagReplacer{

Il lists of taginfo
SOURCE_TAGS
TARGET_TAGS
REQUEST_TAGS

activeSegment //could be one of following SOURCE_SEGMENT (default value), TARGET_SEGMENT, REQUEST_SEGMENT. Tells us how we

should handle tag replacement

iHighestl =0; /I increments with each opening pair tags
iHighestld = 0; /I increments with each tag
fFuzzyRequest = false; /I flag, that tracks if we are dealing with import or fuzzy request. Tells us how we should handle tag replacement

/to track id and i attributes in request and then generate new values for tags in srt and trg that is not matching
iHighestRequestsOriginall = 0; // during saving original data of tags in request segment we save here biggest original | and Id,
iHighestRequestsOriginalld = 0; // and in case if we couldn't find match in source segment, we would generate xliff tag([bx, ex ,x] or can we left [bpt,

ept, ph]?)

/I with using and incrementing this values

[ffunctions

/I during parsing of tags by xercesc we call this function to

/I - collect and save original tagType and attributes(only 'id' and 'i*)

Il - generate normalized tag data

/I - find matches between TARGET and SOURCE segment tags. If we have match - use generated data from SOURCE, if not - generate new unique

data

/I - save generated tags in lists depends on activeSegment value
II - returns taglinfo data structure
GenerateReplacingTag(tagType, attributes);

/laccepts taginfo data
/ldepending on fFuzzyRequest and activeSegment values just prints generated normalized tags with generated attributes
/I or try to find match for tag from SOURCE\TARGET to REQUEST and print matching tag from REQUEST, or, if no matched, generate new xliff tag

with unique attributes

PrintTag(taginfo);

Taglnfo{

fPairedTagClosed = false; /I flag, set to false for bpt/ept tag - waiting for matching ept/bpt tag
fTagAlreadyUsedInTarget = false; // flag, that we use only when we save tags from source segment and then try to match\bind them in target

generated_i = 0; /I for pair tags - generated identifier to find matching tag. the same as in original_i if it's not binded to other tag in segment
generated_id = 0; /I id of tag. should match original_id, if it's not occupied by other tags

generated_tagType = UNKNOWN_ELEMENT; I replaced tagType, could be PH_ELEMENT, BPT_ELEMENT, EPT_ELEMENT

original_i = 0; // original paired tags i

original_id = 0; / original id of tag
original_tagType; // original tagType

M

GenerateReplacingTag{

SOURCE_SEGMENT/REQUEST_SEGMENT

/lwe handle SOURCE and REQUEST segments here the same way, but we

/I use variables activeTagList, that should point to SOURCE_TAGS or REQUEST_TAGS
/I to make code more generic

<single tags> -> would be saved as <ph>{ // for ph and all single tags

if(type =="Ib"){
replace with newline
Jelse{

save original_tagType
save original_id if provided

if it's REQUEST_SEGMENT AND original_id > iHighestRequestsOriginalld
save original_id as new iHighestRequestsOriginalld

set generated_tagType to PH_ELEMENT
set fPairedTagClosed to true
generate generated_id incrementally (increment iHighestld value, then use it)

save tag to activeTagList // SOURCE_TAGS or REQUEST_TAGS

}
}

<opening pair tags> -> would be saved as <bpt>{
save original_i if provided
save original_id if provided
save original_tagType
set generated_tagType to BPT_ELEMENT

/Isave biggest id and i attributes in request original data to generate new values
/I that wouldn't overlap with other tags in case we wouldn't have matches
if it's REQUEST_SEGMENT AND original_i > iHighestRequestsOriginall

save original_i as new iHighestRequestsOriginall

if it's REQUEST_SEGMENT AND original_id > iHighestRequestsOriginalld
save original_id as new iHighestRequestsOriginalld

originalTagTypeToFind = UNKNOWN_ELEMENT // use this variable to identify which tag type we are looking for

if generated_tagType is BPT_ELEMENT
set originalTagTypeToFind to EPT_ELEMENT
else if generated_tagType is BX_ELEMENT
set originalTagTypeToFind to EX_ELEMENT
else
skip search, because other tags could never have wrong order between opening and closing tags
that would be error in <xmlI> and parser would throw INVALID_XML error then

if originalTagTypeToFind is not UNKNOWN_ELEMENT
try to find matching ept tag in this segment
looking in REVERSE order in activeTagList for matchingTag which have [
matchingTag.fPairTagClosed == false
AND matchingTag.generated_tagType == EPT_ELEMENT /lall CLOSING PAIR TAGs always has
BPT_ELEMENT here
AND matchingTag.original_tagType == originalTagTypeToFind
AND matchingTag.original_i == our_bpt_tag.original_i
]

if mathingTag found
set generated_ito mathingTag.generated_i
set generated_id to -mathingTag.generated_id / EPT_TAGS have negative id's/x's that is equal to matching -bpt.x
/l'if there are no matching bpt, ept have unique, but still negative value.
/I negative values and 0 would never be printed in PrintTag
set fPairTagClosed to true
set matchingTag.fPairTagClosed to true
else
generate generated_i incrementally (increment iHighestl value, then use it)
generate generated_id incrementally (increment iHighestld value, then use it)
set fPairTagClosed to false; // it would be set to true if we would use this tag as matching

save tag to activeTagList

}

<closing pair tags> -> would be saved as <ept>{
save original_i if provided
save original_id if provided
save original_tagType
set generated_tagType to EPT_ELEMENT

/Isave biggest id and i attributes in request original data to generate new values
/I that wouldn't overlap with other tags in case we wouldn't have matches
if it's REQUEST_SEGMENT AND original_i > iHighestRequestsOriginall

save original_i as new iHighestRequestsOriginall

if it's REQUEST_SEGMENT AND original_id > iHighestRequestsOriginalld
save original_id as new iHighestRequestsOriginalld

originalTagTypeToFind = UNKNOWN_ELEMENT // use this variable to identify which tag type we are looking for

if generated_tagType is EPT_ELEMENT
set originalTagTypeToFind to BPT_ELEMENT

else if generated_tagType is EX_ELEMENT
set originalTagTypeToFind to BX_ELEMENT

else
skip search, because other tags could never have wrong order between opening and closing tags
that would be error in <xml> and parser would throw INVALID_XML error then

if originalTagTypeToFind is not UNKNOWN_ELEMENT
try to find matching ept tag in this segment
looking in REVERSE order in activeTagList for matchingTag which have [
matchingTag.fPairTagClosed == false
AND matchingTag.generated_tagType == BPT_ELEMENT /lall CLOSING PAIR TAGs always has
BPT_ELEMENT here
AND matchingTag.original_tagType == originalTagTypeToFind
AND matchingTag.original_i == our_ept_tag.original_i

]

if mathingTag found
set generated_ito mathingTag.generated_i
set generated_id to -mathingTag.generated_id / EPT_TAGS have negative id's/x's that is equal to matching -bpt.x
/I'if there are no matching bpt, ept have unique, but still negative value.
/I negative values and 0 would never be printed in PrintTag
set fPairTagClosed to true
set matchingTag.fPairTagClosed to true
else
generate generated_i incrementally (increment iHighestl value, then use it)
generate generated_id incrementally (increment iHighestld value, then multiply it by *(-1) and use it)
set fPairTagClosed to false; // it would be set to true if we would use this tag as matching

save tag to activeTagList

}
}

TARGET_SEGMENT
/Ihere we try to find connections from original Target tags to original Source tags and use data,
/I that was generated for matching SOURCE tag. If there are no matching SOURCE tag - generate new unique attributes
{
save original_tagType
save original_id if provided
save original_i if provided
set generated_tagType to - PH_ELEMENT if we have single tag
- BPT_ELEMENT if we have opening pair tag
- EPT_ELEMENT if we have closing pair tag

try to find matching source tag
looking in SOURCE_TAGS for matchingSourceTag which have [

matchingSourceTag.fAlreadyUsedInTarget == false
AND matchingSourceTag.original_tagType == our_tag.original_tagType
AND matchingSourceTag.original_id == our_tag.original_id

]
if found:
set generated_i to matchingSourceTag.generated_i
set generated_id to matchingSourceTag.generated_id
/I maybe we should add here search for matching ept\bpt tag in TARGET_TAGS, to set valid fPairTagClosed for both
set matchingSourceTag.fAlreadyUsedInTarget to true
else
if generated_tagType is PH_ELEMENT
set fPairTagClosed = true
else
use matchingTagOriginalType and matchingTagGeneratedType to find matching tag in TARGET_TAGS
if original_tagType is BPT_ELEMENT
set matchingTagOriginalType to EPT_ELEMENT

else if generated_tagType is BX_ELEMENT
set matchingTagOriginalType to EX_ELEMENT

else if original_tagType is EPT_ELEMENT
set matchingTagOriginalType to BPT_ELEMENT

else if generated_tagType is EX_ELEMENT
set matchingTagOriginalType to BX_ELEMENT

else
matchingTagOriginalType = original_tagType

if our_tag.generated_tagType = BPT_ELEMENT

set matchingTagGeneratedType to EPT_ELEMENT
else

set matchingTagGeneratedType to BPT_ELEMENT

try to find matching pair tag in this segment
looking in REVERSE order in TARGET for matchingPairTag which have [
matchingPairTag.fPairTagClosed == false
AND matchingPairTag.original_tagType == matchingTagOriginalType
AND matchingPairTag.generated_tagType == matchingTagGeneratedType
AND matchingPairTag.original_i == our_tag.original_i

]
if found:
set generated_ito mathingTag.generated_i
set generated_id to -mathingTag.generated_id / EPT_TAGS have negative id's/x's that is equal to matching -bpt.x
/l'if there are no matching bpt, ept have unique, but still negative value.
/I negative values and 0 would never be printed in PrintTag
set fPairTagClosed to true
set matchingPairTag.fPairTagClosed to true
else:
if we dealing with pair tags -> generate generated_i incrementally (increment iHighestl value, then use it)
generate generated_id incrementally (increment iHighestld value, then multiply it by *(-1) and use it)
set fPairTagClosed to false; // it would be set to true if we would use this tag as matching

save tag in TARGET_TAGS
}

PrintTag{
variables: idToPrint = 0,
iToPrint =0,
tagTypeToPrint = tag.generated_tagType
flags: fClosedTag = true; //for slash at the end of tags like <ph/>
fClosingTag = false; //for slash at the beginning of tag like </g>

if its REQUEST_SEGMENT

/I we need this only to track how tag replacement normalized tags in request segment

idToPrint = tag.generated_id

iToPrint = tag.generated_i
else

try to find matching request tag

looking in SOURCE_TAGS for matchingRequestTag which have [
matchingRequestTag.generated_id == our_tag.generated_i
AND matchingRequestTag.generated_tagType == our_tag.generated_tagType

]
if found:
set idToPrintto matchingRequestTag.original_id
set iToPrintto matchingRequestTag.original_i
set tagTypeToPrint to matchingRequestTag.original_tagType
set fClosingTag to tag.generated_tagType == EPT_ELEMENT
AND tagTypeToPrint != EPT_ELEMENT
AND tagTypeToPrint I= EX_ELEMENT

else
/lgenerate new id and i
generate idToPrint using iHighestRequestsOriginalld incrementally (increment incrementally value and use it)
if generated_tagType is not PH_ELEMENT
/lcould be improved here if we need
generate iToPrint using iHighestRequestsOriginall incrementally (increment incrementally value and use it)

if fClosingTag is true
return ['</" + tagTypeToPrint + ">"]
else
output = ['<" + tagTypeToPrint]
if idToPrint > 0
if fFuzzyRequest is true:
append to output [' id="" + idToPrint + "]
else
append to output [' x=""+ idToPrint + "]

if idToPrint > 0
if fFuzzyRequest is true:
append to output [' rid=""+ iToPrint + "]
else
append to output [' i="" + iToPrint + "]

/ltag that has slash at the end looks like this: <tag />
fClosedTag = tagTypeToPrint == BPT_ELEMENT OR
tagTypeToPrint == EPT_ELEMENT OR
tagTypeToPrint == PH_ELEMENT OR
tagTypeToPrint == BX_ELEMENT OR
tagTypeToPrint == EX_ELEMENT OR
tagTypeToPrint == X_ELEMENT ; // other tags could be only not closed(<g>) or closing(</g>)

if fClosedTag is true
append to output "/"

append to output ">"
return output

e

i

Previous documentation:

Response

http://opentn2/transl ati onmenory/
POST - creating a new or inporting an existing filebased binary QpenTM2 TM

The Paraneter ,nane“ contains the TM Nane as a string. The string has a maxl ength of 256 chars. It can
contain any characters except the characters backslash (\), slash(/), colon (:), question mark (?), asterisk
(*), vertical line (]), less than sign (<), and greater than sign (>).

Upl oading a file is optional, onmitting a file neans creating a enpty TMonly.

If an enpty TMis created, the POST request contains only the JSON structure with the TM Nane.

If an existing binary OpenTM2 file should be additionally inported to the new TM the POST nust be encoded as
mul tipart/formdata.

The JSON structure with the meta data will then be in the first chunk of the multiparted request, the chunk
nust be named “neta”.

The second chunk contains the plain binary file content and nust be naned “data”. This binary data contains
the TM cont ent

The resulting body contains the nane of the TM as given in the POST request.

To OpenTM2 — without data / creating an enpty T™M

{

sourcelLang: “en”, // the source language is required for a new TM
nane: , TM Nane“,

[1 oggi ngThr eshol d: "2"]

}

Raw POST to OpenTM2 — with provided inport file:

POST http://opentn2/translati onmenory HTTP/ 1.1
Content-Type: multipart/formdata; boundary="autogenerated"

-- autogenerated

Cont ent - Type: application/json; charset=utf-8

Cont ent - Di sposi tion: formdata; nane=neta

{"nanme":"TM Nanme", sourcelLang: "en"}

- - aut ogener at ed

Cont ent - Type: inmge/jpeg

Cont ent - Di sposition: formdata; nane=data; filename=Original Filenane.jpg

... TM cont ent
- - aut ogener at ed- -

In both cases from QpenTM2 - HTTP 200 OK:

{

nanme: , TM Name*

}

Errors:

400 Bad Request — if parameters are missing or are not well fornmed.
409 Conflict — if a menory with the given nane al ready exists.

500 Server Error — for other technical problens.
http://opentnR/transl ati onmenory/[TM Nane] /i nport
POST inport a TMX file into an existing CpenTM2 TM
To OpenTM2:

mul tipart/formdata |i ke on POST above, expect that no separate JSON section is needed here.

Call answers directly after the upload is done, but before the inport starts with HTTP 201 - this neans:
Inport is created and will be started now.

From QpenTM2 - HTTP 201 &K

{ /] enpty JSON object, since no data expected as result here!

}

Errors:

400 Bad Request — if paranmeters are missing or are not well forned.
404 Not Found — if the menory of the given nane does not exi st

500 Server Error — for other technical problens.
http://opentn2/translati onmenory/ [TM_Nane]/ st at us
CGET status of a TM

To OpenTM2:
mul tipart/formdata |i ke on POST above, expect that no separate JSON section is needed here.

From QpenTM2 - HTTP 200 OK:

{

‘status’:’inport’ //allowed status values: inport, available, error
}

Errors:

400 Bad Request — if parameters are missing or are not well forned.
404 Not Found — if the nmenmory of the given nanme does not exi st

500 Server Error — for other technical problemns.
http://opentnR/transl ati onmenory/

GET — retrieving a list of available TMFiles

To OpenTM2: -

From QpenTM2 - HTTP 200 OK:

[{

name: 'ny nice T™M

3

Errors:

500 Server Error — for other technical problens.
http://opentn2/transl ati onmenory/ [TM_Nane] /

TM Nane is URL-encoded

GET — retrieving a single TMFile

To OpenTM2: -

From QpenTM2 - HTTP 200 OK:

Sanme as POST from QpenTM2 resul t.

Errors:

404 Not Found — if TMfile to given [TMD] in URL was not found
500 Server Error — for other technical problens.

DELETE — del etes an existing TMFile

Adressed by the given URL, no body needed.

Errors:

404 Not Found — if TMfile to given [TMD] in URL was not found
500 Server Error — for other technical problemns.

PUT — updating an existing TMFile in one request
Currently not needed, would be only to change the TM nane

GET — list of all segnents fromTM

Currently not needed.

http://opentn2/transl ati onmenory/[TM_Nane]/ entry/
POST — creates a new entry or updates target entry if match pair already exists

This nethod updates an existing proposal when a proposal with the sane key information (source text,
| anguage, segnent number, and document nane) exists.

Par anet ers sourcelLang and targetlLang are containing the | anguages as RFC5646.

Parameters source and target are containing the entry contents to be stored. Format? plain string?

Attribute Paraneters:

docunent Nane: contains the fil ename where the segnment resides in Translateb.

context: evaluates to Translate5 segnment mid.

mar kupTabl e: OpenTM2 gets a new markup table naned ,translate5“, so this is the value which is delivered by
Transl at e5.

timestanp: this parameter is not set by translate5, but calculated autonatically and delivered from CpenTM2
to transl atebs.

aut hor: contains the naned user which provides the update / new entry

In addition there are the followi ng OpenTM2 Attributes currently not used by transl ateb5:

segnment Nunber

additional info

type

To OpenTMe:

{

sour ceLang: 'de',

targetLang: 'en',

source: ,Das ist das Haus des N kol aus“,
target: ,This is the house of St. N chol as”,
docunent Nanme: ‘ny file.sdlxliff',
segnment Nunber:

mar kupTabl e: 'translateb',

aut hor: , Thomas Lauria“,

type: '',

timeStanmp: ',

context: '123',

addlnfo: "',

[1 oggi ngThr eshol d: "2"]

}

The result fromthe server contains the sane data as posted to the server. No additonal ID is added, since
the entries are identified by the whole source string instead by an ID, only the tinmestanp is added.

From QpenTM2 — HTTP 200 OK:

{

sour ceLang: 'de',

targetLang: 'en',

source: ,Das ist das Haus des Ni kol aus”,
target: ,This is the house of St. N chol as”,
docunent Nanme: ‘ny file.sdlxliff',

segnent Nunber: 123,

mar kupTabl e: 'translateb',

tinmestanp: '2015-05-12 13:46: 12",

aut hor: ,Thomas Lauri a“

}

Errors:

404 Not Found — if TMfile to given [TM Nane] in URL was not found

500 Server Error — for other technical problens.

400 Bad Request — if JSON paraneters are missing or are not well forned.

http://opentn2/transl ati onmenory/[TM Nane]/ fuzzysear ch/
POST- Serves a nenory | ookup based on the provided search criteria

To OpenTMe:

{

sour ceLang: 'de',

targetLang: 'en-US' ,

source: ,Das ist das Haus des N kol aus“,
docunentNanme: 'ny file.sdlxliff', // can be enpty
segnment Nunber: 123, // can be enpty

mar kupTabl e: '"translate5', // can be enpty
context: ,xyz“, // can be enpty

[1 oggi ngThr eshol d: " 2"]

}

From QpenTM2 HTTP 200 OK:

{

" Numf FoundPr oposal s': 2,

"results':

[{

source: ,Das ist das Haus des N kol aus“,
target: ,This is the house of St. N chol as”,
sourcelLang: 'de', rfc5646

targetLang: 'en', rfc5646

mat chRate: ' 100",

docunent Nanme: 'ny file.sdlxliff',

Docunent Short Nane: 'shortnamtxt',

id: "identifier',

type: 'Manual',

mat chType: ' Exact',

segment Nunber: 123,

mar kupTabl e: ' XYZ',

timestanp: '2015-05-12 13:46:12',

author: , Thomas Lauria“.

context: "',

addl nfo: "'

1A

source: ,Das ist das Haus des Ni kol aus”,
target: ,This is the house of St. N chol as”,
sourcelLang: 'de', rfc5646

targetLang: 'en', rfc5646

mat chRate: ' 100",

docunent Nanme: 'ny file.sdlxliff",
Docunent Short Nane: 'shortnamtxt',
id: '"identifier',

type: 'Manual',

mat chType: ' Exact',

segnment Nunber: 123,

mar kupTabl e: ' XYZ',

timestanp: '2015-05-12 13:46: 12",
aut hor: , Thomas Lauria“.

context: "',

addl nf o:

3

Errors:

400 Bad Request — if search, query or |anguage paraneters are missing or are not well forned.
404 Not Found — if TMfile to given [TM Nane] in URL was not found

500 Server Error — for other technical problens.

http://opentn2/translati onmenory/[TM_Nane] / concor dancesearch /?
POST — Perforns a context search of the given search string in the proposals contained in a nenory. Returns
one proposal per request.

To OpenTM2:

{

searchString: 'Haus des N kol aus',

searchType: 'source', // values can be source or target

searchPosition: 123// can be enpty; Position where a search should start in the nmenory, see bel ow

nunResul ts: 1,

nmeSear chAft er NunResul ts: 100 //nunber of mlliseconds the search will continue, after the first result is
found. Al additional results that are found in this additional time will also be returned until nunResults
is reached. |f nunResults is reached before nsSearchAfterNunResults is reached, the search will abort. If
msSear chAfter NunResults is reached before nunResults is reached, search is also aborted. Al found results
are delivered in both cases.

[1 oggi ngThreshol d: " 2"]

}

From QpenTM2 HTTP 200 CK:

{

NewSear chPosition: '123:54', /returns NULL, if end of TMis reached, see bel ow

results:[{

source: ,Das ist das Haus des Ni kol aus”,
target: ,This is the house of St. N chol as”,
sourcelLang: 'de', rfc5646

targetLang: 'en', rfc5646

mat chRate: ' 100",

docunent Name: 'ny file.sdlxliff',
Docunent Short Nane: 'shortnamtxt',

id: '"identifier',

type: 'Manual',

mat chType: ' Exact',

segnment Nunber: 123,

mar kupTabl e: ' XYZ',

timestanp: '2015-05-12 13:46: 12",

aut hor: , Thomas Lauria“.

context: "',

addl nf o:

WA

source: ,Das ist das Haus des N kol aus“,
target: ,This is the house of St. N chol as”,
sourcelLang: 'de', rfc5646

targetlLang: 'en', rfc5646

mat chRate: ' 100",

docunent Nanme: ‘ny file.sdlxliff',

Docunent Short Nane: 'shortnamtxt',
id: '"identifier',

type: 'Manual ',

mat chType: ' Exact',

segnment Nunber: 123,

mar kupTabl e: ' XYZ',

timestanp: '2015-05-12 13:46:12',
aut hor: ,Thomas Lauria“.

context: "',

addl nfo: '’

3

Errors:

400 Bad Request — if search, query or |anguage paranmeters are mssing or are not well formed.
404 Not Found — if TMfile to given [TM Nane] in URL was not found

500 Server Error — for other technical problemns.

	t5memory - translate5 TM service - REST API

