
t5memory backend

Most useful flags
Other flags

Logs
Build process
Run a single docker container with a specific version

The command and its parameters explained:
Update of the above running container

t5memory was ported to work with Ubuntu 20.04 LTS. It uses Proxygen library(HTTP lib, supported by Facebook), which uses other dependencies, like

would be pulled and built automatically during proxygen build: fizz, fmt, folly, googletest,, wangle, zstd
should be installed in the system for proxygen build: glog, gflags , boost, OpenSSL
libs, that are not related to proxygen: xercesc, ICU

For configuration, uses and command line arguments. Configuration file() is disabled by default, but you t5memory gflags ~/.t5memory/t5memory.conf
can enable it from the command line(but probably there is no reason to use it) since functionality is much more profound). gflags

To get list of flags just call ,t5memory --help

To use any flag just add two dashes before, like --v=2

Here is the list of flags:

Most useful flags

name description ty
pe

default
value

limits

1 allowedram Sets amount RAM(in MB) allowed for service to use int
32

2048 [1...
0]1000

2 t5_ip Which ip to use in t5memory(default is any). Should be in format '1.1.1.1'. By default t5memory is listening all
available ips

stri
ng

""

3 port What port to listen on int
32

4080 [0...
]32768

4 servicename Sets service name to use in URL stri
ng

t5memory

5 servicethreads Sets amount of worker threads for service(for proxygen) int
32

1 []1...100

6 t5loglevel Sets t5memory log level threshold from DEVELOP(0) to TRANSACTION(6) int
32

2(T5INFO) [0...6]

7 triplesthreshold Sets threshold to pre-fuzzy filtering based on hashes of neighbor tokens int
32

33 [0...
100]

8 timeout Sets the timeout for service request handling in ms. int
32

180000 [0...
360000]

9 useconfigfile Set to use values from the config file that should be located under ~/.t5memory/t5memory.conf bo
ol

false

10 v Show all VLOG(m) messages for m <= this. Overridable by --vmodule. This should be used to enable DEBUG
(v=1) and DEVELOP(v=2) logs.
If set to v=1, all logs, starting from DEBUG(1) level, would be added to the buffer of logs(instead of only request
data), which would be printed in case of an error.
If set to v=2, all logs would ignore the buffer and would be printed, starting from level=0(develop logs)

int
32

0 [0...2]

11 alsologtostderr log messages go to stderr in addition to logfiles bo
ol

false

12 logtostderr log messages go to stderr instead of logfiles bo
ol

false

13 log_dir If specified, logfiles are written into this directory instead of the default logging directory. stri
ng

~/.t5memory
/LOG/

14 stderrthreshold log messages at or above this level are copied to stderr in addition to logfiles. This flag obsoletes --
alsologtostderr.

int
32

2

15 max_log_size approx. maximum log file size (in MB). A value of 0 will be silently overridden to 1. int
32

1800

#
#
#
#
#

16 minloglevel Messages logged at a lower level than this don't actually get logged anywhere int
32

0

17 stop_logging_if_f
ull_disk

Stop attempting to log to disk if the disk is full bo
ol

false

18 drop_log_memor
y

Drop in-memory buffers of log contents. Logs can grow very quickly and they are rarely read before they need to
be evicted from
 memory. Instead, drop them from memory as soon as they are flushed to disk.

bo
ol

true

Other flags

Flags from /build/gflags-0sowem/gflags-2.2.2/src/ :gflags.cc
 -flagfile (load flags from file) type: string default: ""
 -fromenv (set flags from the environment [use 'export FLAGS_flag1=value'])
 type: string default: ""
 -tryfromenv (set flags from the environment if present) type: string
 default: ""
 -undefok (comma-separated list of flag names that it is okay to specify on
 the command line even if the program does not define a flag with that
 name. IMPORTANT: flags in this list that have arguments MUST use the
 flag=value format) type: string default: ""

 Flags from /build/gflags-0sowem/gflags-2.2.2/src/ :gflags_completions.cc
 -tab_completion_columns (Number of columns to use in output for tab
 completion) type: int32 default: 80
 -tab_completion_word (If non-empty, HandleCommandLineCompletions() will
 hijack the process and attempt to do bash-style command line flag
 completion on this value.) type: string default: ""

 Flags from /build/gflags-0sowem/gflags-2.2.2/src/ :gflags_reporting.cc
 -help (show help on all flags [tip: all flags can have two dashes])
 type: bool default: false currently: true
 -helpfull (show help on all flags -- same as -help) type: bool
 default: false
 -helpmatch (show help on modules whose name contains the specified substr)
 type: string default: ""
 -helpon (show help on the modules named by this flag value) type: string
 default: ""
 -helppackage (show help on all modules in the main package) type: bool
 default: false
 -helpshort (show help on only the main module for this program) type: bool
 default: false
 -helpxml (produce an xml version of help) type: bool default: false
 -version (show version and build info and exit) type: bool default: false

 Flags from /home/libs/proxygen/_build/deps/folly/folly/detail/MemoryIdler.cpp:
 -folly_memory_idler_purge_arenas (if enabled, folly memory-idler purges
 jemalloc arenas on thread idle) type: bool default: true

 Flags from /home/libs/proxygen/_build/deps/folly/folly/executors/IOThreadPoolExecutor.cpp:
 -dynamic_iothreadpoolexecutor (IOThreadPoolExecutor will dynamically create
 threads) type: bool default: true

 Flags from /home/libs/proxygen/_build/deps/folly/folly/executors/ThreadPoolExecutor.cpp:
 -threadtimeout_ms (Idle time before ThreadPoolExecutor threads are joined)
 type: int64 default: 60000

 Flags from /home/libs/proxygen/_build/deps/folly/folly/experimental/observer/detail/ObserverManager.cpp:
 -observer_manager_pool_size (How many internal threads ObserverManager
 should use) type: int32 default: 4

 Flags from /home/libs/proxygen/_build/deps/folly/folly/synchronization/Hazptr.cpp:
 -folly_hazptr_use_executor (Use an executor for hazptr asynchronous
 reclamation) type: bool default: true

http://gflags.cc
http://gflags_completions.cc
http://gflags_reporting.cc

 Flags from /home/libs/proxygen/_build/deps/wangle/wangle/ssl/SSLSessionCacheManager.cpp:
 -dcache_unit_test (All VIPs share one session cache) type: bool
 default: false

 Flags from /home/libs/proxygen/lib/utils/ZlibStreamCompressor.cpp:
 -zlib_compressor_buffer_growth (The buffer growth size to use during IOBuf
 zlib deflation) type: int64 default: 2024

 Flags from /home/or/workspace/translate5/translate5-tm-service-source/source/RestAPI/ProxygenHandler.cpp:
 -request_number (Include request sequence number in response) type: bool
 default: true

 Flags from src/ :logging.cc
 -alsologtoemail (log messages go to these email addresses in addition to
 logfiles) type: string default: ""
 -colorlogtostderr (color messages logged to stderr (if supported by
 terminal)) type: bool default: false currently: true
 -log_backtrace_at (Emit a backtrace when logging at file:linenum.)
 type: string default: ""
 -log_link (Put additional links to the log files in this directory)
 type: string default: ""
 -log_prefix (Prepend the log prefix to the start of each log line)
 type: bool default: true
 -logbuflevel (Buffer log messages logged at this level or lower (-1 means
 don't buffer; 0 means buffer INFO only; ...)) type: int32 default: 0
 -logbufsecs (Buffer log messages for at most this many seconds) type: int32
 default: 30
 -logemaillevel (Email log messages logged at this level or higher (0 means
 email all; 3 means email FATAL only; ...)) type: int32 default: 999
 -logfile_mode (Log file mode/permissions.) type: int32 default: 436
 -logmailer (Mailer used to send logging email) type: string
 default: "/bin/mail"

 Flags from src/ :utilities.cc
 -symbolize_stacktrace (Symbolize the stack trace in the tombstone)
 type: bool default: true

 Flags from src/ :vlog_is_on.cc

 -vmodule (per-module verbose level. Argument is a comma-separated list of
 <module name>=<log level>. <module name> is a glob pattern, matched
 against the filename base (that is, name ignoring .cc/.h./-inl.h). <log
 level> overrides any value given by --v.) type: string default: ""

Logs
For logging t5memory uses glog library. t5memory has it's own logging levels (DEVELOP=0, DEBUG=1, INFO=2, WARNIGN=3, ERROR=4, FATAL=5,
TRANSACTION=6), that maps to 4 levels of glog
t5memory log glog log
DEVELOP = INFO && VLOG>=2

DEBUG = INFO && VLOG>=1

INFO = INFO

WARNING=WARNIGN

FATAL = DFATAL(regular FATAL would crash app immediately)

TRANSACTION = INFO

You can manipulate logs with flags.
By default t5memory wouldn't log to stderr, to change that use --logtostderr, or, if you want logs in both strerr and files, then use --alsologtostderr

You can set log behaviour with --v=1 or --v=2 flag.

By default t5memory logs every log with level=INFO during initialization and then switches to state when it logs only errors and requests data, that caused
errors. It saves request data(URL and body if it has) and add it once if there would appear any error. Then it flushes itself

 and with next error from the same request there would be no duplicates of info about request.

http://logging.cc
http://utilities.cc
http://vlog_is_on.cc

If you would set --v=1, then it would save all other logs, starting from DEBUG, into the buffer, but would print it only if there would be an error.

If you would set --v=2, then it would omit buffer and print logs directly, starting from DEVELOP.
You can disable some logs with --minloglevel. Also, if that makes sense, old logging threshold could be implemented to set some bevahiour of --v=1 or --
v=2, but to filter some DEBUG and DEVELOP logs.

Build process
We are building t5memory in docker containers. To build t5memory you should build container with proxygen first. This would require a lot of resources
(you should have at least 16 GB RAM and image would take 20 GB)

To build proxygen container you should go to folder where Dockerfile_proxygen is located(from 'translate5-tm-service-source/docker', but you need only
dockerfile to build container) and run this command:

docker build -t translate5/proxygen -f Dockerfile_proxygen .

and then wait.
Then you can build t5memory from folder where Dockerfile(from 'translate5-tm-service-source/docker/') with command

docker build -t translate5/t5memory .
This would pull t5memory repository from github and would build t5memory from last commit
Alternatively you can call the same command from the project's root directory, this would build t5memory from local files instead of repo, which could be
used for development.

Run a single docker container with a specific version

To run t5memory as a single docker container

docker run -d --restart unless-stopped --name t5memory -p 127.0.0.1:4041:4040/tcp -v /home/translate5tmservice/.
t5memory-in-docker:/root/.t5memory/MEM --entrypoint /root/t5memory translate5/t5memory --port=4040 --
alsologtostderr=1 --v=0

The command and its parameters explained:

Command part description Multiple t5memory instances

docker run -d Run the container detached, so in the
background

--restart unless-stopped Ensure that the container is restarted (f.e. after
reboot)

--name t5memory The label of the container must be changed if multiple containers of t5memory should run.

-p 127.0.0.1:4041:4040/tcp The port mapping from where the internal port
(4040) is mapped to on the host (127.0.0.1:
4041)

must be changed if multiple containers of t5memory should run.

-v /home
/translate5tmservice/.t5mem
ory-in-docker:/root/.
t5memory/MEM

The data path on the host mapped into the
container - this affects the TM storage and
persistency!

should be changed if multiple containers of t5memory should run,
there might be scenarios where multiple instances share the same
files and therefore the same mapping

--entrypoint /root/t5memory The command which should be called in the
container on startup

translate5/t5memory The container image, with any version tag the
latest image locally available is used. A version
tag might by added here:

translate5/t5memory:0.3.17

When running multiple versions with different versions, version tag
should be change accordingly.

--port=4040 --
alsologtostderr=1 --v=0

The parameters passed to the command
defined in --entrypoint, so direct t5memory
parameters

http://t5memory-in-docker/root/.t5memory/MEM
http://t5memory-in-docker/root/.t5memory/MEM
http://t5memory-in-docker/root/.t5memory/MEM

Update of the above running container

To update / change the image version of the above running container, do the following:

docker stop t5memory # stops the running container
docker rm t5memory # removes the container - danger! If the data is not mapped via -v
volumes parameters, the data is lost!
docker pull translate5/t5memory # updates the image to the latest version

or to pull a specific version:
docker pull translate5/t5memory:0.3.17 # optionally pulls a specific version

the same docker run as explained above, so by default:
docker run -d --restart unless-stopped --name t5memory -p 127.0.0.1:4041:4040/tcp -v /home/translate5tmservice/.
t5memory-in-docker:/root/.t5memory/MEM --entrypoint /root/t5memory translate5/t5memory --port=4040 --
alsologtostderr=1 --v=0

	t5memory backend

